Détail de l'auteur
Auteur Dengyin Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Single image dehazing via an improved atmospheric scattering model / Mingye Ju in The Visual Computer, vol 33 n° 12 (December 2017)
[article]
Titre : Single image dehazing via an improved atmospheric scattering model Type de document : Article/Communication Auteurs : Mingye Ju, Auteur ; Dengyin Zhang, Auteur ; Xuemei Wang, Auteur Année de publication : 2017 Article en page(s) : pp 1613 - 1625 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] brouillard
[Termes IGN] diffusion du rayonnement
[Termes IGN] effet atmosphérique
[Termes IGN] image isolée
[Termes IGN] scène urbaine
[Termes IGN] segmentation d'imageRésumé : (Auteur) Under foggy or hazy weather conditions, the visibility and color fidelity of outdoor images are prone to degradation. Hazy images can be the cause of serious errors in many computer vision systems. Consequently, image haze removal has practical significance for real-world applications. In this study, we first analyze the inherent weaknesses of the atmospheric scattering model and propose an improvement to address those weaknesses. Then, we present a fast image haze removal algorithm based on the improved model. In our proposed method, the input image is partitioned into several scenes based on the haze thickness. Next, averaging and erosion operations calculate the rough scene luminance map in a scene-wise manner. We obtain the rough scene transmission map by maximizing the contrast in each scene and then develop a way to gently remove the haze using an adaptive method for adjusting scene transmission based on scene features. In addition, we propose a guided total variation model for edge optimization, so as to prevent from the block effect as well as to eliminate the negative effect from the wrong scene segmentation results. The experimental results demonstrate that our method is effective in solving a series of common problems, including uneven illuminance, overenhanced and oversaturated images, and so forth. Moreover, our method outperforms most current dehazing algorithms in terms of visual effects, universality, and processing speed. Numéro de notice : A2017-715 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1007/s00371-016-1305-1 En ligne : https://doi.org/10.1007/s00371-016-1305-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88099
in The Visual Computer > vol 33 n° 12 (December 2017) . - pp 1613 - 1625[article]