Détail de l'auteur
Auteur Sophie Violette |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Understanding the geodetic signature of large aquifer systems: Example of the Ozark plateaus in central United States / Stacy Larochelle in Journal of geophysical research : Solid Earth, vol 127 n° 3 (March 2022)
[article]
Titre : Understanding the geodetic signature of large aquifer systems: Example of the Ozark plateaus in central United States Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Adriano Gualandi, Auteur ; Laurent Longuevergne, Auteur ; Paul Rebischung , Auteur ; Sophie Violette, Auteur ; Jean-Philippe Avouac, Auteur Année de publication : 2022 Article en page(s) : n° e2021JB023097 Note générale : bibliographie - financial support :
PGSD‐3‐517078‐2018, Natural Sciences and Engineering Research Council of Canada
2019‐2020 STEM Chateaubriand Fellowship, Office for Science and Technology of the Embassy of France in the United States
IPGP contribution #4232, Institut de Physique du Globe de ParisLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse en composantes indépendantes
[Termes IGN] aquifère
[Termes IGN] déformation de la croute terrestre
[Termes IGN] données GNSS
[Termes IGN] données GRACE
[Termes IGN] élasticité
[Termes IGN] Etats-Unis
[Termes IGN] hydrogéologie
[Termes IGN] surcharge hydrologiqueRésumé : (auteur) The continuous redistribution of water involved in the hydrologic cycle leads to deformation of the solid Earth. On a global scale, this deformation is well explained by the loading imposed by hydrological mass variations and can be quantified to first order with space-based gravimetric and geodetic measurements. At the regional scale, however, aquifer systems also undergo poroelastic deformation in response to groundwater fluctuations. Disentangling these related but distinct 3D deformation fields from geodetic time series is essential to accurately invert for changes in continental water mass, to understand the mechanical response of aquifers to internal pressure changes as well as to correct time series for these known effects. Here, we demonstrate a methodology to accomplish this task by considering the example of the well-instrumented Ozark Plateaus Aquifer System (OPAS) in the central United States. We begin by characterizing the most important sources of groundwater level variations in the spatially heterogeneous piezometer dataset using an Independent Component Analysis. Then, to estimate the associated poroelastic displacements, we project geodetic time series corrected for hydrological loading effects onto the dominant groundwater temporal functions. We interpret the extracted displacements in light of analytical solutions and a 2D model relating groundwater level variations to surface displacements. In particular, the relatively low estimates of elastic moduli inferred from the poroelastic displacements and groundwater fluctuations may be indicative of aquifer layers with a high fracture density. Our findings suggest that OPAS undergoes significant poroelastic deformation, including highly heterogeneous horizontal poroelastic displacements. Numéro de notice : A2022-944 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1029/2021JB023097 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1029/2021JB023097 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103155
in Journal of geophysical research : Solid Earth > vol 127 n° 3 (March 2022) . - n° e2021JB023097[article]Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States / Stacy Larochelle (2021)
Titre : Understanding the geodetic signature of large aquifer systems: Example of the Ozark Plateaus in Central United States Type de document : Article/Communication Auteurs : Stacy Larochelle, Auteur ; Kristel Chanard , Auteur ; Luce Fleitout, Auteur ; Jérôme Nicolas Fortin, Auteur ; Adriano Gualandi, Auteur ; Laurent Longuevergne, Auteur ; Paul Rebischung , Auteur ; Sophie Violette, Auteur ; Jean-Philippe Avouac, Auteur Editeur : Washington DC [Etats-Unis] : Earth and Space Science Open Archive ESSOAr Année de publication : 2021 Projets : 1-Pas de projet / Importance : 29 p. Note générale : bibliographie
soumis au Journal of Geophysical Research - Solid EarthLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] aquifère
[Termes IGN] Arkansas (Etats-Unis)
[Termes IGN] déformation de la croute terrestre
[Termes IGN] élasticité
[Termes IGN] Kansas (Etats-Unis ; état)
[Termes IGN] masse d'eau
[Termes IGN] Missouri (Etats-Unis)
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] série temporelle
[Termes IGN] surcharge hydrologiqueRésumé : (auteur) The continuous redistribution of water mass involved in the hydrologic cycle leads to deformation of the solid Earth. On a global scale, this deformation is well explained by redistribution in surface loading and can be quantified to first order with space-based gravimetric and geodetic measurements. At the regional scale, however, aquifer systems also undergo poroelastic deformation in response to groundwater fluctuations. Disentangling these related but distinct 3D deformation fields from geodetic time series is essential to accurately invert for changes in continental water mass, to understand the mechanical response of aquifers to internal pressure changes as well as to correct time series for these known effects. Here, we demonstrate a methodology to accomplish this task by considering the example of the well-instrumented Ozark Plateaus Aquifer System (OPAS) in central United States. We begin by characterizing the most important sources of signal in the spatially heterogeneous groundwater level dataset using an Independent Component Analysis. Then, to estimate the associated poroelastic displacements, we project geodetic time series corrected for surface loading effects onto orthogonalized versions of the groundwater temporal functions. We interpret the extracted displacements in light of analytical solutions and a 2D model relating groundwater level variations to surface displacements. In particular, the relatively low estimates of elastic moduli inferred from the poroelastic displacements and groundwater fluctuations may be indicative of surficial layers with a high fracture density. Our findings suggest that OPAS undergoes significant poroelastic deformation, including highly heterogeneous horizontal poroelastic displacements. Numéro de notice : P2021-006 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Preprint nature-HAL : Préprint DOI : 10.1002/essoar.10507870.1 Date de publication en ligne : 02/09/2021 En ligne : https://doi.org/10.1002/essoar.10507870.1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98994 The eastern flank of the Merapi volcano (Central Java, Indonesia) : Architecture and implications of volcaniclastic deposits / Adrien Selles in Journal of Asian Earth Sciences, vol 108 (15 August 2015)
[article]
Titre : The eastern flank of the Merapi volcano (Central Java, Indonesia) : Architecture and implications of volcaniclastic deposits Type de document : Article/Communication Auteurs : Adrien Selles, Auteur ; Benoit Deffontaines , Auteur ; Heru Hendrayana, Auteur ; Sophie Violette, Auteur Année de publication : 2015 Article en page(s) : pp 33 - 47 Note générale : bibliographie Langues : Anglais (eng) Résumé : (auteur) Merapi volcano in central Java Island is considered to be the most active and dangerous andesitic volcano in Indonesia. The volcanic history of Merapi volcano is complex, and often perturbed by frequent episodes of eruptive edifice building and subsequent erosion and collapse. In this paper, we present a detailed field, literature, and GIS-study of the well-preserved eastern flank of Merapi, which has been spared from major eruptions, in order to reconstruct the geologic and geomorphic history of the edifice. Here, the most recent deposits arise from the remobilization of the old volcanic materials by lahar, gravitational collapse of massive lava flow and local landslide processes.
In this study, we describe the specific deposits and subsequent alteration and removal processes. The stratigraphic analysis was performed with respect to the distinct phases of construction due to eruptions and dismantling of the volcano by erosion, gravitational collapse and the associated local to distal re-sedimentation. Based on GIS analysis and field surveys, a drainage network anomaly was detected in two main rivers, the Soka and the Brambang Rivers. We infer that an apex fan of volcaniclastic material was deposited into a central paleo-Pusur river and explains the abnormal divergence of the rivers. A new lithological 3D conceptual model is proposed based on the characterization of the lithological facies and their temporal and spatial evolution along the eastern flank of Merapi volcano.Numéro de notice : A2015--109 Affiliation des auteurs : UPEM-LASTIG+Ext (2016-2019) Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jseaes.2015.04.026 En ligne : https://doi.org/10.1016/j.jseaes.2015.04.026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88275
in Journal of Asian Earth Sciences > vol 108 (15 August 2015) . - pp 33 - 47[article]