Détail de l'auteur
Auteur Abel Ramoleo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Remote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
[article]
Titre : Remote sensing of species diversity using Landsat 8 spectral variables Type de document : Article/Communication Auteurs : Sabelo Madonsela, Auteur ; Moses Azong Cho, Auteur ; Abel Ramoleo, Auteur ; Onisimo Mutanga, Auteur Année de publication : 2017 Article en page(s) : pp 116 - 127 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique du sud (état)
[Termes IGN] analyse en composantes principales
[Termes IGN] bande infrarouge
[Termes IGN] biodiversité
[Termes IGN] espèce végétale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] indice de diversité
[Termes IGN] indice de végétation
[Termes IGN] matrice de co-occurrence
[Termes IGN] régression linéaire
[Termes IGN] savaneRésumé : (Auteur) The application of remote sensing in biodiversity estimation has largely relied on the Normalized Difference Vegetation Index (NDVI). The NDVI exploits spectral information from red and near infrared bands of Landsat images and it does not consider canopy background conditions hence it is affected by soil brightness which lowers its sensitivity to vegetation. As such NDVI may be insufficient in explaining tree species diversity. Meanwhile, the Landsat program also collects essential spectral information in the shortwave infrared (SWIR) region which is related to plant properties. The study was intended to: (i) explore the utility of spectral information across Landsat-8 spectrum using the Principal Component Analysis (PCA) and estimate alpha diversity (α-diversity) in the savannah woodland in southern Africa, and (ii) define the species diversity index (Shannon (H′), Simpson (D2) and species richness (S) – defined as number of species in a community) that best relates to spectral variability on the Landsat-8 Operational Land Imager dataset. We designed 90 m × 90 m field plots (n = 71) and identified all trees with a diameter at breast height (DbH) above 10 cm. H′, D2 and S were used to quantify tree species diversity within each plot and the corresponding spectral information on all Landsat-8 bands were extracted from each field plot. A stepwise linear regression was applied to determine the relationship between species diversity indices (H′, D2 and S) and Principal Components (PCs), vegetation indices and Gray Level Co-occurrence Matrix (GLCM) texture layers with calibration (n = 46) and test (n = 23) datasets. The results of regression analysis showed that the Simple Ratio Index derivative had a higher relationship with H′, D2 and S (r2 = 0.36; r2 = 0.41; r2 = 0.24 respectively) compared to NDVI, EVI, SAVI or their derivatives. Moreover the Landsat-8 derived PCs also had a higher relationship with H′ and D2 (r2 of 0.36 and 0.35 respectively) than the frequently used NDVI, and this was attributed to the utilization of the entire spectral content of Landsat-8 data. Our results indicate that: (i) the measurement scales of vegetation indices impact their sensitivity to vegetation characteristics and their ability to explain tree species diversity; (ii) principal components enhance the utility of Landsat-8 spectral data for estimating tree species diversity and (iii) species diversity indices that consider both species richness and abundance (H′ and D2) relates better with Landsat-8 spectral variables. Numéro de notice : A2017-723 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.10.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.10.008 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88408
in ISPRS Journal of photogrammetry and remote sensing > vol 133 (November 2017) . - pp 116 - 127[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017112 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017113 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt