Détail de l'auteur
Auteur Ran Jing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – A case study in Wild Duck Lake Wetland, Beijing, China / Ran Jing in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
[article]
Titre : Above-bottom biomass retrieval of aquatic plants with regression models and SfM data acquired by a UAV platform – A case study in Wild Duck Lake Wetland, Beijing, China Type de document : Article/Communication Auteurs : Ran Jing, Auteur ; Zhaoning Gong, Auteur ; Wenji Zhao, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 122 - 134 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] arbre de décision
[Termes IGN] biomasse
[Termes IGN] croissance végétale
[Termes IGN] drone
[Termes IGN] image aérienne
[Termes IGN] indice de végétation
[Termes IGN] lac
[Termes IGN] macrophyte
[Termes IGN] modèle de régression
[Termes IGN] orthoimage
[Termes IGN] Pékin (Chine)
[Termes IGN] régression linéaire
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] zone humideRésumé : (Auteur) Above-bottom biomass (ABB) is considered as an important parameter for measuring the growth status of aquatic plants, and is of great significance for assessing health status of wetland ecosystems. In this study, Structure from Motion (SfM) technique was used to rebuild the study area with high overlapped images acquired by an unmanned aerial vehicle (UAV). We generated orthoimages and SfM dense point cloud data, from which vegetation indices (VIs) and SfM point cloud variables including average height (HAVG), standard deviation of height (HSD) and coefficient of variation of height (HCV) were extracted. These VIs and SfM point cloud variables could effectively characterize the growth status of aquatic plants, and thus they could be used to develop a simple linear regression model (SLR) and a stepwise linear regression model (SWL) with field measured ABB samples of aquatic plants. We also utilized a decision tree method to discriminate different types of aquatic plants. The experimental results indicated that (1) the SfM technique could effectively process high overlapped UAV images and thus be suitable for the reconstruction of fine texture feature of aquatic plant canopy structure; and (2) an SWL model based on point cloud variables: HAVG, HSD, HCV and two VIs: NGRDI, ExGR as independent variables has produced the best predictive result of ABB of aquatic plants in the study area, with a coefficient of determination of 0.84 and a relative root mean square error of 7.13%. In this analysis, a novel method for the quantitative inversion of a growth parameter (i.e., ABB) of aquatic plants in wetlands was demonstrated. Numéro de notice : A2017-732 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.11.002 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.11.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88431
in ISPRS Journal of photogrammetry and remote sensing > vol 134 (December 2017) . - pp 122 - 134[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2017122 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt 081-2017123 DEP-EXM Revue Saint-Mandé Dépôt en unité Exclu du prêt