Détail de l'auteur
Auteur Kurt Bollmann |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Remotely sensed forest habitat structures improve regional species conservation / Christian Reichsteiner in Remote sensing in ecology and conservation, vol 3 n° 4 (December 2017)
[article]
Titre : Remotely sensed forest habitat structures improve regional species conservation Type de document : Article/Communication Auteurs : Christian Reichsteiner, Auteur ; Florian Zellweger, Auteur ; Anatole Gerber, Auteur ; Frank T. Breiner, Auteur ; Kurt Bollmann, Auteur Année de publication : 2017 Article en page(s) : pp 247 - 258 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Ecologie
[Termes IGN] Aves
[Termes IGN] distribution spatiale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] habitat forestier
[Termes IGN] lasergrammétrie
[Termes IGN] politique de conservation (biodiversité)
[Termes IGN] SuisseRésumé : (auteur) Recent studies show that light detection and ranging (LiDAR) derived habitat variables significantly increase the performance and accuracy of species distribution models (SDMs). In particular, the structure of complex habitats such as forest can be accurately parametrized by an area-wide, LiDAR-based vegetation profile. However, evidence of specific applications of such models in real-world conservation management still remains sparse. Here, we developed a resource selection SDM for hazel grouse (Bonasa bonasia L.) in a Swiss nature park with the aim to map habitat suitability and to inform the park management about habitat improvement measures. We used remote sensing, particularly LiDAR to derive ecologically relevant forest vegetation characteristics at the local scale and used them as predictors in an ensemble SDM approach. The predicted habitat suitability was mainly affected by local, fine grained vegetation structure. Average vegetation height, shrub density and canopy height variation contributed most to the habitat quality for hazel grouse. This clearly shows how LiDAR provides the means to develop ecologically interpretable predictor variables of forest habitat structure and that these predictors can be used to reliably map local-scale habitat quality, indicated by high model performance scores (median AUC of 0.918). This improves spatial conservation planning, and at the same time, provides meaningful information to derive habitat improvement measures that can be implemented in the field by foresters. Hazel grouse occurrence in the park is restricted to a few highly suitable, disjunct habitat patches. Therefore, conservation management should increase the connectivity of suitable habitat with the aim to stimulate an increase and better exchange of individuals in the regional hazel grouse population. Habitat improvements can be achieved by forestry measures that regularly integrate early successional forest stages into production forests. They should contain stands with a shrub density of around 30% as well as heterogeneous stands in terms of vegetation height. Numéro de notice : A2017-736 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88735
in Remote sensing in ecology and conservation > vol 3 n° 4 (December 2017) . - pp 247 - 258[article]Documents numériques
en open access
Remotely sensed forest habitat structures - pdf éditeurAdobe Acrobat PDF