Détail de l'auteur
Auteur Yuan Wang |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatic registration of point cloud and panoramic images in urban scenes based on pole matching / Yuan Wang in International journal of applied Earth observation and geoinformation, vol 115 (December 2022)
[article]
Titre : Automatic registration of point cloud and panoramic images in urban scenes based on pole matching Type de document : Article/Communication Auteurs : Yuan Wang, Auteur ; Yuhao Li, Auteur ; Yiping Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103083 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de formes
[Termes IGN] chevauchement
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image panoramique
[Termes IGN] image virtuelle
[Termes IGN] optimisation par essaim de particules
[Termes IGN] points registration
[Termes IGN] recalage d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobile
[Termes IGN] zone tamponRésumé : (auteur) Given the initial calibration of multiple sensors, the fine registration between Mobile Laser Scanning (MLS) point clouds and panoramic images is still challenging due to the unforeseen movement and temporal misalignment while collecting. To tackle this issue, we proposed a novel automatic method to register the panoramic images and MLS point clouds based on the matching of pole objects. Firstly, 2D pole instances in the panoramic images are extracted by a semantic segmentation network and then optimized. Secondly, every corresponding frustum point cloud of each pole instance is obtained by a shape-adaptive buffer region in the panoramic image, and the 3D pole object is extracted via a combination of slicing, clustering, and connected domain analysis, then all 3D pole objects are fused. Finally, 2D and 3D pole objects are re-projected onto virtual images respectively, and then fine 2D-3D correspondences are collected through maximizing pole overlapping area by Particle Swarm Optimization (PSO). The accurate extrinsic orientation parameters are acquired by the Efficient Perspective-N-Point (EPnP). The experiments indicate that the proposed method performs effectively on two challenging urban scenes with an average registration error of 2.01 pixels (with RMSE 0.88) and 2.35 pixels (with RMSE 1.03), respectively. Numéro de notice : A2022-827 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103083 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103083 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102011
in International journal of applied Earth observation and geoinformation > vol 115 (December 2022) . - n° 103083[article]Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR / Xue Ji in IEEE Transactions on geoscience and remote sensing, vol 60 n° 8 (August 2022)
[article]
Titre : Full-waveform classification and segmentation-based signal detection of single-wavelength bathymetric LiDAR Type de document : Article/Communication Auteurs : Xue Ji, Auteur ; Bisheng Yang, Auteur ; Yuan Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4208714 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du signal
[Termes IGN] forme d'onde pleine
[Termes IGN] Hainan (Chine)
[Termes IGN] lidar bathymétrique
[Termes IGN] optimisation par essaim de particulesRésumé : (auteur) Single-wavelength bathymetric light detection and ranging (LiDAR) (532 nm) can provide seamless meter- and submeter-scale digital elevation model (DEMs) of both the terrestrial surface and seafloor. However, mixed terrestrial and bathymetric surfaces obtained by this sensor are challenging for full-waveform (FW) signal detection. This study addresses the issues in two FW mixed surfaces: accurate classification of terrestrial and nonterrestrial waveforms from the original waveforms without auxiliary information and flexible detection of peaks based on a new FW theoretical model. A novel FW signal detection model (FWSD) for single-wavelength bathymetric LiDAR is proposed without complex feature extraction and iterative procedure through waveform classification and segmentation. The raw FWs are divided into five categories for subsequent signal detection using a convolutional neural network that merges local descriptors with contextual information. The signal detection task is then split into FW segment recognition and peak extraction using a new FW model, which integrates a leapfrog sliding window FW segmentation, an improved extreme learning machine (ELM) algorithm for FW segment recognition, and a flexible signal detection framework. To search for the optimal initial parameters for ELM, a self-annealing particle swarm optimization (SAPSO) algorithm is introduced, and the output weight is adjusted by online sequence to improve its generalization. When combined with the Richardson–Lucy deconvolution (RLD) algorithm, FWSD can be adapted to deal with shallow water waveforms. Finally, a test demonstration with an airborne dataset shows that FWSD has higher detection efficiency and higher accuracy than Levenberg–Marquardt algorithm optimized generalized Gaussian model (LM-GGM) and RLD algorithm. Numéro de notice : A2022-661 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3198168 Date de publication en ligne : 11/08/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3198168 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101517
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 8 (August 2022) . - n° 4208714[article]A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems / Xiao-Yong Zhuge in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : A fast cloud detection algorithm applicable to monitoring and nowcasting of daytime cloud systems Type de document : Article/Communication Auteurs : Xiao-Yong Zhuge, Auteur ; Xiaolei Zou, Auteur ; Yuan Wang, Auteur Année de publication : 2017 Article en page(s) : pp 6111 - 6119 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] détection des nuages
[Termes IGN] HimawariRésumé : (Auteur) The Advanced Himawari Imager (AHI) onboard Japanese geostationary satellite Himawari-8 provides two more visible, three more near-infrared, and six more infrared channels than the only one visible and four infrared channels available from the previous geostationary imager instruments. By taking advantage of AHI's newly added channels 1, 3, and 4 with wavelengths centered at 0.46, 0.64, and $0.86 μm, respectively, a fast cloud detection algorithm is developed. Since the spectral differences of the reflectance between any two of AHI's channels 1, 3, and 4 over clouds are smaller than those over land and ocean, a visible-based cloud index (VCI) for daytime cloud detection can thus be defined by the root mean square of the three differences between any two of these three channels. An AHI pixel is identified as cloudy if the VCI is smaller than a threshold, which has different values over ocean and land. Cloud detection is further adjusted by a bias correction using AHI channels 7 and 13. The average accuracy of the proposed simple cloud detection is comparable with those obtained from a more complicated cloud mask algorithm involving not only more channels but also model simulations. It is also found that the bias correction is needed mostly over cirrus clouds and Gobi. Numéro de notice : A2017-743 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2720664 En ligne : https://doi.org/10.1109/TGRS.2017.2720664 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88777
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6111 - 6119[article]