Détail de l'auteur
Auteur Ming Ma |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Sparse bayesian learning-based time-variant deconvolution / Sanyi Yuan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : Sparse bayesian learning-based time-variant deconvolution Type de document : Article/Communication Auteurs : Sanyi Yuan, Auteur ; Shangxu Wang, Auteur ; Ming Ma, Auteur ; et al., Auteur Année de publication : 2017 Article en page(s) : pp 6182 - 6194 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] amélioration du contraste
[Termes IGN] apprentissage automatique
[Termes IGN] déconvolutionRésumé : (Auteur) In seismic exploration, the wavelet-filtering effect and Q-filtering (amplitude attenuation and velocity dispersion) effect blur the reflection image of subsurface layers. Therefore, both wavelet- and Q-filtering effects should be reduced to retrieve a high-quality subsurface image, which is significant for fine reservoir interpretation. We derive a nonlinear time-variant convolution model to sparsely represent nonstationary seismograms in time domain involving these two effects and present a time-variant deconvolution (TVD) method based on sparse Bayesian learning (SBL) to solve the model to obtain a high-quality reflectivity image. The SBL-based TVD essentially obtains an optimum posterior mean of the reflectivity image, which is regarded as the inverted reflectivity result, by iteratively solving a Bayesian maximum posterior and a type-II maximum likelihood. Because a hierarchical Gaussian prior for reflectivity controlled by model-dependent hyper-parameters is adopted to approximately represent the fact that reflectivity is sparse, SBL-based TVD can retrieve a sparse reflectivity image through the principled sequential addition and deletion of Q-dependent time-variant wavelets. In general, strong reflectors are acquired relatively earlier, whereas weak reflectors and deep reflectors are imaged later. The method has the capacity to avoid false artifacts represented by sequential positive or negative reflectivity spikes with short two-way travel time, which typically occur within stationary deconvolution outcomes. Synthetic, laboratorial, and field data examples are used to demonstrate the effectiveness of the method and illustrate its advantages over SBL-based stationary deconvolution and TVD using an l2-norm or an l1-norm regularization. The results show that SBL-based TVD is a potentially effective, stable, and high-quality imaging tool. Numéro de notice : A2017-745 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2722223 En ligne : https://doi.org/10.1109/TGRS.2017.2722223 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88779
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6182 - 6194[article]