Détail de l'auteur
Auteur Shaoquan Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Robust minimum volume simplex analysis for hyperspectral unmixing / Shaoquan Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : Robust minimum volume simplex analysis for hyperspectral unmixing Type de document : Article/Communication Auteurs : Shaoquan Zhang, Auteur ; Alexander Agathos, Auteur ; Jun Li, Auteur Année de publication : 2017 Article en page(s) : pp 6431 - 6439 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme du simplexe
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] factorisation
[Termes IGN] image hyperspectrale
[Termes IGN] méthode robusteRésumé : (Auteur) Most blind hyperspectral unmixing methods exploit convex geometry properties of hyperspectral data. The minimum volume simplex analysis (MVSA) is one of such methods, which, as many others, estimates the minimum volume (MV) simplex where the measured vectors live. MVSA was conceived to circumvent the matrix factorization step often implemented by MV-based algorithms and also to cope with outliers, which compromise the results produced by MV algorithms. Inspired by the recently proposed robust MV enclosing simplex (RMVES) algorithm, we herein introduce the robust MVSA (RMVSA), which is a version of MVSA robust to noise. As in RMVES, the robustness is achieved by employing chance constraints, which control the volume of the resulting simplex. RMVSA differs, however, substantially from RMVES in the way optimization is carried out. In this paper, we develop a linearization relaxation of the nonlinear chance constraints, which can greatly lighten the computational complex of chance constraint problems. The effectiveness of RMVSA is illustrated by comparing its performance with the state of the art. Numéro de notice : A2017-749 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2728104 En ligne : https://doi.org/10.1109/TGRS.2017.2728104 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88784
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6431 - 6439[article]