Détail de l'auteur
Auteur Zhou Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A batch-mode regularized multimetric active learning framework for classification of hyperspectral images / Zhou Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 11 (November 2017)
[article]
Titre : A batch-mode regularized multimetric active learning framework for classification of hyperspectral images Type de document : Article/Communication Auteurs : Zhou Zhang, Auteur ; Melba M. Crawford, Auteur Année de publication : 2017 Article en page(s) : pp 6594 - 6609 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification barycentrique
[Termes IGN] image hyperspectrale
[Termes IGN] précision de la classificationRésumé : (Auteur) Techniques that combine multiple types of features, such as spectral and spatial features, for hyperspectral image classification can often significantly improve the classification accuracy and produce a more reliable thematic map. However, the high dimensionality of the input data and the typically limited quantity of labeled samples are two key challenges that affect classification performance of supervised methods. In order to simultaneously deal with these issues, a regularized multimetric active learning (AL) framework is proposed which consists of three main parts. First, a regularized multimetric learning approach is proposed to jointly learn distinct metrics for different types of features. The regularizer incorporates the unlabeled data based on the neighborhood relationship, which helps avoid overfitting at early stages of AL, when the quantity of training data is particularly small. Then, as AL proceeds, the regularizer is also updated through similarity propagation, thus taking advantage of informative labeled samples. Finally, multiple features are projected into a common feature space, in which a new batch-mode AL strategy combining uncertainty and diversity is utilized in conjunction with k-nearest neighbor classification to enrich the set of labeled samples. In order to evaluate the effectiveness of the proposed framework, the experiments were conducted on two benchmark hyperspectral data sets, and the results were compared to those achieved by several other state-of-the-art AL methods. Numéro de notice : A2017-760 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2730583 En ligne : https://doi.org/10.1109/TGRS.2017.2730583 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=88788
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 11 (November 2017) . - pp 6594 - 6609[article]