Détail de l'auteur
Auteur Thomas Brosset |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Detecting blind building façades from highly overlapping wide angle aerial imagery / Jean-Pascal Burochin in ISPRS Journal of photogrammetry and remote sensing, vol 96 (October 2014)
[article]
Titre : Detecting blind building façades from highly overlapping wide angle aerial imagery Type de document : Article/Communication Auteurs : Jean-Pascal Burochin , Auteur ; Bruno Vallet , Auteur ; Mathieu Brédif , Auteur ; Clément Mallet , Auteur ; Thomas Brosset, Auteur ; Nicolas Paparoditis , Auteur Année de publication : 2014 Article en page(s) : pp 193 - 209 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Télédétection
[Termes IGN] façade
[Termes IGN] modélisation 3D
[Termes IGN] télédétection aérienne
[Termes IGN] texturageRésumé : (Auteur) This paper deals with the identification of blind building façades, i.e. façades which have no openings, in wide angle aerial images with a decimeter pixel size, acquired by nadir looking cameras. This blindness characterization is in general crucial for real estate estimation and has, at least in France, a particular importance on the evaluation of legal permission of constructing on a parcel due to local urban planning schemes. We assume that we have at our disposal an aerial survey with a relatively high stereo overlap along-track and across-track and a 3D city model of LoD 1, that can have been generated with the input images. The 3D model is textured with the aerial imagery by taking into account the 3D occlusions and by selecting for each façade the best available resolution texture seeing the whole façade. We then parse all 3D façades textures by looking for evidence of openings (windows or doors). This evidence is characterized by a comprehensive set of basic radiometric and geometrical features. The blindness prognostic is then elaborated through an (SVM) supervised classification. Despite the relatively low resolution of the images, we reach a classification accuracy of around 85% on decimeter resolution imagery with 60×40%60×40% stereo overlap. On the one hand, we show that the results are very sensitive to the texturing resampling process and to vegetation presence on façade textures. On the other hand, the most relevant features for our classification framework are related to texture uniformity and horizontal aspect and to the maximal contrast of the opening detections. We conclude that standard aerial imagery used to build 3D city models can also be exploited to some extent and at no additional cost for facade blindness characterisation. Numéro de notice : A2014-378 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Autre URL associée : vers HAL Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2014.07.011 Date de publication en ligne : 13/08/2014 En ligne : https://doi.org/10.1016/j.isprsjprs.2014.07.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=73817
in ISPRS Journal of photogrammetry and remote sensing > vol 96 (October 2014) . - pp 193 - 209[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2014101 RAB Revue Centre de documentation En réserve L003 Disponible