Détail de l'auteur
Auteur Saygin Abdikan |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images / Omer Gokberk Narin in Geocarto international, vol 37 n° 5 ([01/03/2022])
[article]
Titre : Monitoring of phenological stage and yield estimation of sunflower plant using Sentinel-2 satellite images Type de document : Article/Communication Auteurs : Omer Gokberk Narin, Auteur ; Saygin Abdikan, Auteur Année de publication : 2022 Article en page(s) : pp 1378 - 1392 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] image multitemporelle
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] phénologie
[Termes IGN] rendement agricole
[Termes IGN] tournesol
[Termes IGN] TurquieRésumé : (Auteur) With the increase of the world’s population, while urbanization is increasing, agricultural lands are decreasing. Therefore, monitoring of up-to-date agricultural lands is important for agricultural product estimation. The study investigates suitability of Sentinel-2 data for the phenological stage analysis and yield estimation of sunflower plant. To this aim, fieldworks was conducted and sunflower parcels were identified in Zile district of Tokat province, Turkey which has dense sunflower production. In this study, ten Vegetation Indices (VIs) were performed by using multi-temporal Sentinel-2 data obtained during the growth stages of sunflower plant and yield estimation was obtained. As a result, the indices obtained on 30 June, at the stage of inflorescence emergence, provided coefficient of determination (R2) higher than 0.67 and The Root Mean Square Error (RMSE) lower than 13 kg/da. Among the VIs, the best forecast obtained by NDVI (R2 = 0.74 and RMSE = 10.80 kg/da) approximately three months before the harvest of sunflower. Numéro de notice : A2022-276 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1765886 Date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/10106049.2020.1765886 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100784
in Geocarto international > vol 37 n° 5 [01/03/2022] . - pp 1378 - 1392[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022051 RAB Revue Centre de documentation En réserve L003 Disponible Investigation of the landslides in Beylikdüzü-Esenyurt districts of Istanbul from InSAR and GNSS observations / Caglar Bayik in Natural Hazards, vol 109 n° 1 (October 2021)
[article]
Titre : Investigation of the landslides in Beylikdüzü-Esenyurt districts of Istanbul from InSAR and GNSS observations Type de document : Article/Communication Auteurs : Caglar Bayik, Auteur ; Saygin Abdikan, Auteur ; Alpay Ozdemir, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1201 - 1220 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse diachronique
[Termes IGN] bande C
[Termes IGN] bande L
[Termes IGN] données géologiques
[Termes IGN] données GNSS
[Termes IGN] effondrement de terrain
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] interféromètrie par radar à antenne synthétique
[Termes IGN] Istanbul (Turquie)
[Termes IGN] surveillance géologique
[Termes IGN] urbanisationRésumé : (auteur) This study aims to detect recent landslide displacements caused by geological structure of the region where there is intense urbanization using advanced Interferometric Synthetic Aperture Radar (InSAR) techniques and with Global Navigation Satellite Systems (GNSS) observations in the Beylikdüzü and Esenyurt districts in Istanbul megacity, Turkey. In this study, multiple satellites with different frequencies (C-band, L-band) and periodic GNSS observations were employed. For the entire peninsula, we processed 149 images from the ascending orbit, 144 images from the descending orbit of Sentinel-1 (C-Band) and 24 ALOS-2 (L-band) images from the ascending orbit. The evaluations were carried out in the period between 2015 and 2020 for Sentinel-1 imagery and 2015–2020 for ALOS-2 imagery respectively. Since the study area is covered by dense settlements, the Persistent Scatterer InSAR (PSI) technique was utilized to determine the landslide behaviors. According to the results, for both orbits of the Sentinel-1, the horizontal displacement and the vertical displacement were observed in the range of − 10 to 6 mm. Compared to the magnitude of displacement signal measured by Sentinel-1, ALOS-2 data has higher values due to the high surface penetration of the L-band. The results showed that most of the old landslide regions are reactivated. Horizontal movement derived through Sentinel-1 showed that the highest movement overlaps with old landslides. L-band ALOS-2 provided better spatial coverage of landslide movement than C-band Sentinel-1 data, especially at the rural Numéro de notice : A2021-752 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT/URBANISME Nature : Article DOI : 10.1007/s11069-021-04875-7 Date de publication en ligne : 20/06/2021 En ligne : https://doi.org/10.1007/s11069-021-04875-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98737
in Natural Hazards > vol 109 n° 1 (October 2021) . - pp 1201 - 1220[article]Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area / Saygin Abdikan in Geocarto international, vol 33 n° 1 (January 2018)
[article]
Titre : Exploring image fusion of ALOS/PALSAR data and LANDSAT data to differentiate forest area Type de document : Article/Communication Auteurs : Saygin Abdikan, Auteur Année de publication : 2018 Article en page(s) : pp 21 - 37 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] forêt
[Termes IGN] fusion d'images
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] qualité des données
[Termes IGN] transformation en ondelettesRésumé : (Auteur) Remote sensing data utilize valuable information via various satellite sensors that have different specifications. Image fusion allows the user to combine different spatial and spectral resolutions to improve the information for purposes such as forest monitoring and land cover mapping. In this study, I assessed the contribution of dual-polarized Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar data to multispectral Landsat imagery. The research investigated the separability of forested areas using different image fusion techniques. Quality analysis of the fused images was conducted using qualitative and quantitative analyses. I applied the support vector machine image classification method for land cover mapping. Among all methods examined, the à trous wavelet transform method best differentiated the forested area with an overall accuracy (OA) of 94.316%, while Landsat had an OA of 92.626%. The findings of this study indicated that optical-SAR-fused images improve land cover classification, which results in higher quality forest inventory data and mapping. Numéro de notice : A2018-030 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1222635 En ligne : https://doi.org/10.1080/10106049.2016.1222635 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89199
in Geocarto international > vol 33 n° 1 (January 2018) . - pp 21 - 37[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2018011 RAB Revue Centre de documentation En réserve L003 Disponible