Détail de l'auteur
Auteur Óscar Rodríguez de Rivera |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of pinus nigra and pinus pinaster stands / Juncal Espinosa in Forests, vol 11 n° 9 (September 2020)
[article]
Titre : Use of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of pinus nigra and pinus pinaster stands Type de document : Article/Communication Auteurs : Juncal Espinosa, Auteur ; Óscar Rodríguez de Rivera, Auteur ; Javier Madrigal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : N° 1006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse
[Termes IGN] classification bayesienne
[Termes IGN] données météorologiques
[Termes IGN] Espagne
[Termes IGN] estimation bayesienne
[Termes IGN] incendie de forêt
[Termes IGN] intégrale de Laplace
[Termes IGN] modèle linéaire
[Termes IGN] Pinus nigra
[Termes IGN] Pinus pinaster
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Research Highlights: Litterfall biomass after prescribed burning (PB) is significantly influenced by meteorological variables, stand characteristics, and the fire prescription. Some of the fire-adaptive traits of the species under study (Pinus nigra and Pinus pinaster) mitigate the effects of PB on litterfall biomass. The Bayesian approach, tested here for the first time, was shown to be useful for analyzing the complex combination of variables influencing the effect of PB on litterfall.
Background and Objectives: The aims of the study focused on explaining the influence of meteorological conditions after PB on litterfall biomass, to explore the potential influence of stand characteristic and tree traits that influence fire protection, and to assess the influence of fire prescription and fire behavior.
Materials and Methods: An experimental factorial design including three treatments (control, spring, and autumn burning), each with three replicates, was established at two experimental sites (N = 18; 50 × 50 m2 plots). The methodology of the International Co-operative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP forests) was applied and a Bayesian approach was used to construct a generalized linear mixed model.
Results: Litterfall was mainly affected by the meteorological variables and also by the type of stand and the treatment. The effects of minimum bark thickness and the height of the first live branch were random. The maximum scorch height was not high enough to affect the litterfall. Time during which the temperature exceeded 60 °C (cambium and bark) did not have an important effect. Conclusions: Our findings demonstrated that meteorological conditions were the most significant variables affecting litterfall biomass, with snowy and stormy days having important effects. Significant effects of stand characteristics (mixed and pure stand) and fire prescription regime (spring and autumn PB) were shown. The trees were completely protected by a combination of low-intensity PB and fire-adaptive tree traits, which prevent direct and indirect effects on litterfall. Identification of important variables can help to improve PB and reduce the vulnerability of stands managed by this method.Numéro de notice : A2020-753 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091006 Date de publication en ligne : 18/09/2020 En ligne : https://doi.org/10.3390/f11091006 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96433
in Forests > vol 11 n° 9 (September 2020) . - N° 1006[article]Development and Comparison of Species Distribution Models for Forest Inventories / Óscar Rodríguez de Rivera in ISPRS International journal of geo-information, vol 6 n° 6 (June 2017)
[article]
Titre : Development and Comparison of Species Distribution Models for Forest Inventories Type de document : Article/Communication Auteurs : Óscar Rodríguez de Rivera, Auteur ; Antonio López-Quílez, Auteur Année de publication : 2017 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] analyse de données
[Termes IGN] arbre (flore)
[Termes IGN] classification et arbre de régression
[Termes IGN] distribution spatiale
[Termes IGN] entropie maximale
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] modèle mathématique
[Termes IGN] régression multivariée par spline adaptative
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) A comparison of several statistical techniques common in species distribution modeling was developed during this study to evaluate and obtain the statistical model most accurate to predict the distribution of different forest tree species (in our case presence/absence data) according environmental variables. During the process we have developed maximum entropy (MaxEnt), classification and regression trees (CART), multivariate adaptive regression splines (MARS), showing the statistical basis of each model and, at the same time, we have developed a specific additive model to compare and validate their capability. To compare different results, the area under the receiver operating characteristic (ROC) function (AUC) was used. Every AUC value obtained with those models is significant and all of the models could be useful to represent the distribution of each species. Moreover, the additive model with thin plate splines gave the best results. The worst capability was obtained with MARS. This model’s performance was below average for several species. The additive model developed obtained better results because it allowed for changes and calibrations. In this case we were aware of all of the processes that occurred during the modeling. By contrast, models obtained using specific software, in general, perform like “hermetic machines”, because it could sometimes be impossible to understand the stages that led to the final results. Numéro de notice : A2017-810 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi6060176 En ligne : https://doi.org/10.3390/ijgi6060176 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89250
in ISPRS International journal of geo-information > vol 6 n° 6 (June 2017)[article]