Détail de l'auteur
Auteur Jianjun Pan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring the impact of seasonality on urban land-cover mapping using multi-season sentinel-1A and GF-1 WFV images in a subtropical monsoon-climate region / Tao Zhou in ISPRS International journal of geo-information, vol 7 n° 1 (January 2018)
[article]
Titre : Exploring the impact of seasonality on urban land-cover mapping using multi-season sentinel-1A and GF-1 WFV images in a subtropical monsoon-climate region Type de document : Article/Communication Auteurs : Tao Zhou, Auteur ; Meifang Zhao, Auteur ; Chuanliang Sun, Auteur ; Jianjun Pan, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image GF-1
[Termes IGN] image Sentinel-SAR
[Termes IGN] Kiangsou (Chine)
[Termes IGN] surface imperméable
[Termes IGN] variation saisonnière
[Termes IGN] zone urbaineRésumé : (Auteur) The objective of this research was to investigate the impact of seasonality on urban land-cover mapping and to explore better classification accuracy by using multi-season Sentinel-1A and GF-1 wide field view (WFV) images, and the combinations of both types of images in subtropical monsoon-climate regions in Southeast China. We obtained multi-season Sentinel-1A and GF-1 WFV images, as well as the combinations of both data, by using a support vector machine (SVM) and a random forest (RF) classifier. The backscatter intensity, texture, and interference-coherence images were extracted from Sentinel-1A images, and different combinations of these Sentinel-1A-derived images were used to evaluate their ability to map urban land cover. The results showed that the performance of winter images was better than that of any other season, while the summer images performed the worst. Higher classification accuracy was achieved by using multi-season images, and satisfactory classification results were obtained when using Sentinel-1A images from only three seasons. The best classification result was achieved using a combination of all Sentinel-1A data from all four seasons and GF-1 WFV data from winter, with an overall accuracy of up to 96.02% and a kappa coefficient reaching 0.9502. The performance of textures was slightly better than that of the backscatter-intensity images. Although the coherence data performed the worst, it was still able to distinguish urban impervious surfaces well. In addition, the overall classification accuracy of RF was better than that of SVM. Numéro de notice : A2018-040 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7010003 En ligne : https://doi.org/10.3390/ijgi7010003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89262
in ISPRS International journal of geo-information > vol 7 n° 1 (January 2018)[article]