Détail de l'auteur
Auteur Laurent Desvillettes |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A derivation of the Vlasov–Navier–Stokes model for aerosol flows from kinetic theory / Etienne Bernard in Communications in Mathematical Sciences, vol 15 n° 6 ([01/09/2017])
[article]
Titre : A derivation of the Vlasov–Navier–Stokes model for aerosol flows from kinetic theory Type de document : Article/Communication Auteurs : Etienne Bernard , Auteur ; Laurent Desvillettes, Auteur ; François Golse, Auteur ; Valeria Ricci, Auteur Année de publication : 2017 Projets : KIBORD / Article en page(s) : pp 1703 - 1741 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Mathématique
[Termes IGN] aérosol
[Termes IGN] champ de vitesse
[Termes IGN] équation de Navier-Stokes
[Termes IGN] flux
[Termes IGN] gaz
[Termes IGN] particuleRésumé : (auteur) This article proposes a derivation of the Vlasov–Navier–Stokes system for spray/aerosol flows. The distribution function of the dispersed phase is governed by a Vlasov-equation, while the velocity field of the propellant satisfies the Navier–Stokes equations for incompressible fluids. The dynamics of the dispersed phase and of the propellant are coupled through the drag force exerted by the propellant on the dispersed phase. We present a formal derivation of this model from a multiphase Boltzmann system for a binary gaseous mixture, involving the droplets/dust particles in the dispersed phase as one species, and the gas molecules as the other species. Under suitable assumptions on the collision kernels, we prove that the sequences of solutions to the multiphase Boltzmann system converge to distributional solutions to the Vlasov-Navier–Stokes equation in some appropriate distinguished scaling limit. Specifically, we assume (a) that the mass ratio of the gas molecules to the dust particles/droplets is small, (b) that the thermal speed of the dust particles/droplets is much smaller than that of the gas molecules and (c) that the mass density of the gas and of the dispersed phase are of the same order of magnitude. The class of kernels modelling the interaction between the dispersed phase and the gas includes, among others, elastic collisions and inelastic collisions of the type introduced in [F. Charles: in “Proceedings of the 26th International Symposium on Rarefied Gas Dynamics”, AIP Conf. Proc. 1084:409–414, 2008]. Numéro de notice : A2017-823 Affiliation des auteurs : LASTIG LAREG+Ext (2012-mi2018) Thématique : MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.4310/CMS.2017.v15.n6.a11 Date de publication en ligne : 28/06/2017 En ligne : http://dx.doi.org/10.4310/CMS.2017.v15.n6.a11 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89276
in Communications in Mathematical Sciences > vol 15 n° 6 [01/09/2017] . - pp 1703 - 1741[article]