Détail de l'auteur
Auteur Zhanlong Chen |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Application of a graph convolutional network with visual and semantic features to classify urban scenes / Yongyang Xu in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Application of a graph convolutional network with visual and semantic features to classify urban scenes Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Shuai Jin, Auteur ; Zhanlong Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2009-2034 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] matrice de co-occurrence
[Termes IGN] OpenStreetMap
[Termes IGN] Pékin (Chine)
[Termes IGN] point d'intérêt
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] scène urbaineRésumé : (auteur) Urban scenes consist of visual and semantic features and exhibit spatial relationships among land-use types (e.g. industrial areas are far away from the residential zones). This study applied a graph convolutional network with neighborhood information (henceforth, named the neighbour supporting graph convolutional neural network), to learn spatial relationships for urban scene classification. Furthermore, a co-occurrence analysis with visual and semantic features proceeded to improve the accuracy of urban scene classification. We tested the proposed method with the fifth ring road of Beijing with an overall classification accuracy of 0.827 and a Kappa coefficient of 0.769. In comparison with other methods, such as support vector machine, random forest, and general graph convolutional network, the case study showed that the proposed method improved about 10% in urban scene classification. Numéro de notice : A2022-740 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2048834 Date de publication en ligne : 10/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2048834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101717
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2009-2034[article]Multilane roads extracted from the OpenStreetMap urban road network using random forests / Yongyang Xu in Transactions in GIS, vol 23 n° 2 (April 2019)
[article]
Titre : Multilane roads extracted from the OpenStreetMap urban road network using random forests Type de document : Article/Communication Auteurs : Yongyang Xu, Auteur ; Zhong Xie, Auteur ; Liang Wu, Auteur ; Zhanlong Chen, Auteur Année de publication : 2019 Article en page(s) : pp 224 - 240 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données localisées des bénévoles
[Termes IGN] extraction du réseau routier
[Termes IGN] milieu urbain
[Termes IGN] OpenStreetMap
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau routierRésumé : (Auteur) The volunteered geographic information (VGI) collected in OpenStreetMap (OSM) has been used in many applications. Extracting multilane roads and establishing a high level of expressed detail play important roles in the field of automated cartographic generalization. An accurate and detailed extraction process benefits geographic analysis, urban region division, and road network construction, as well as transportation applications services. The road networks in OSM have a high level of detail and complex structures; however, they also include many duplicate lines, which degrade the efficiency and increase the difficulty of extracting multilane roads. To resolve these problems, this work proposes a machine‐learning‐based approach, in which the road networks are first converted from lines to polygons. Then, various geometric descriptors, including compactness, width, circularity, area, perimeter, complexity, parallelism, shape descriptor, and width‐to‐length ratio, are used to train a random forest (RF) classifier and identify the candidates. Finally, another RF is trained to evaluate the candidates using all the geometric descriptors and topological features; the outputs of this second trained RF are the predicted multilane roads. An experiment using OSM data from Beijing, China validated the proposed method, which achieves a highly effective performance when extracting multilane roads from OSM. Numéro de notice : A2019-250 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12514 Date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1111/tgis.12514 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93006
in Transactions in GIS > vol 23 n° 2 (April 2019) . - pp 224 - 240[article]An analysis of movement patterns between zones using taxi GPS data / Zhanlong Chen in Transactions in GIS, vol 21 n° 6 (December 2017)
[article]
Titre : An analysis of movement patterns between zones using taxi GPS data Type de document : Article/Communication Auteurs : Zhanlong Chen, Auteur ; Xi Gong, Auteur ; Zhong Xie, Auteur Année de publication : 2017 Article en page(s) : pp 1341 - 1363 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] modèle numérique
[Termes IGN] Pékin (Chine)
[Termes IGN] trace GPS
[Termes IGN] trajectographie par GPS
[Termes IGN] trajet (mobilité)
[Termes IGN] urbanisme
[Termes IGN] véhicule automobile
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The discovery of zones and people's movement patterns supports a better understanding of modern cities and enables a more comprehensive strategy for urban planning. This article proposes a modified method based on previous research to simultaneously discover people's zones and movement patterns, called movement patterns between functional zones (MPFZ). The method attempts to take full advantage of taxi GPS data to identify MPFZs by merging the movement traces satisfying the merging conditions. Considering movement directions, movement numbers and the adjacent constraints that consist of spatial relationship and attribute features, the merging conditions limit the movement traces to be merged. The new MPFZs are discovered by an iteration process and are measured by the following three evaluation indices: v‐value, a‐value and c‐value, which represent coverage, accuracy and their trade‐off. Using a real‐world taxi dataset of Beijing, 24 new MPFZs are discovered, which have higher v‐, a‐ and c‐values than the unmerged MPFZs. The results of the real‐world dataset experiment show that the proposed approach is effective and efficient. The proposed method can also be applied to other types of transportation data and regions by adjusting the dataset utilized and controlling the iteration process. Numéro de notice : A2017-839 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12281 Date de publication en ligne : 07/08/2017 En ligne : https://doi.org/10.1111/tgis.12281 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89375
in Transactions in GIS > vol 21 n° 6 (December 2017) . - pp 1341 - 1363[article]