Détail de l'auteur
Auteur Roope Ruotsalainen |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mitigating the risk of wind damage at the forest landscape level by using stand neighbourhood and terrain elevation information in forest planning / Roope Ruotsalainen in Forestry, an international journal of forest research, vol 96 n° 1 (January 2023)
[article]
Titre : Mitigating the risk of wind damage at the forest landscape level by using stand neighbourhood and terrain elevation information in forest planning Type de document : Article/Communication Auteurs : Roope Ruotsalainen, Auteur ; Timo Pukkala, Auteur ; Veli-Pekka Ikonen, Auteur Année de publication : 2023 Article en page(s) : pp 121 - 134 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] altitude
[Termes IGN] canopée
[Termes IGN] dommage forestier causé par facteurs naturels
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] gestion forestière
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle numérique de surface
[Termes IGN] pondération
[Termes IGN] prévention des risques
[Termes IGN] topographie locale
[Termes IGN] vent
[Termes IGN] voisinage (relation topologique)
[Vedettes matières IGN] ForesterieRésumé : (auteur) Wind damage and the bark beetle outbreaks associated with it are major threats to non-declining, long-term wood production in boreal forests. We studied whether the risk of wind damage in a forested landscape could be decreased by using stand neighbourhood information in conjunction with terrain elevation information. A reference management plan minimized the differences in canopy height at stand boundaries and did not utilize information on the topography of the terrain, overlooking the possibility that the risk of windthrow may depend on the elevation of the terrain. Alternative management plans were developed by using four different weighting schemes when minimizing differences in canopy height at stand boundaries: (1) no weight (reference); (2) mean terrain elevation at the stand boundary; (3) deviation of the mean elevation of the boundary from the mean elevation of the terrain within a 100-m radius and (4) multipliers that described the effect of topography on wind speed at the stand boundary. For each management plan, we calculated the total number of at-risk trees and the total area of vulnerable stand edge. These statistics were based on the calculated critical wind speeds needed to uproot trees in stand edge zones. Minimization of the weighted mean of canopy height differences between adjacent stands resulted in homogeneous landscapes in terms of canopy height. Continuous cover management was often preferred instead of rotation management due to smaller canopy height differences between adjacent stands and its economical superiority. The best weighting scheme for calculating the mean canopy height difference between adjacent stands was the deviation between the mean elevation of the boundary and the mean elevation of the terrain within 100 m of the boundary. However, the differences between the weighting schemes were small. It was found that reasonably simple methods, based on a digital terrain model, a stand map, and the canopy heights of stands, could be used in forest planning to minimize the risk of wind damage. Validation against actual wind damages is required to assess the reliability of the results and to further develop the methodology presented. Numéro de notice : A2023-114 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1093/forestry/cpac039 Date de publication en ligne : 08/10/2022 En ligne : https://doi.org/10.1093/forestry/cpac039 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102481
in Forestry, an international journal of forest research > vol 96 n° 1 (January 2023) . - pp 121 - 134[article]Reconstructing forest canopy from the 3D triangulations of airborne laser scanning point data for the visualization and planning of forested landscapes / Jari Vauhkonen in Annals of Forest Science, vol 74 n° 1 (March 2017)
[article]
Titre : Reconstructing forest canopy from the 3D triangulations of airborne laser scanning point data for the visualization and planning of forested landscapes Type de document : Article/Communication Auteurs : Jari Vauhkonen, Auteur ; Roope Ruotsalainen, Auteur Année de publication : 2017 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse multicritère
[Termes IGN] biomasse forestière
[Termes IGN] canopée
[Termes IGN] coupe (sylviculture)
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] géovisualisation
[Termes IGN] modèle de simulation
[Termes IGN] participation du public
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] reconstruction 3D
[Termes IGN] relation topologique 3D
[Termes IGN] SIG participatif
[Termes IGN] simulation numérique
[Termes IGN] troncRésumé : (Auteur) We present a data-driven technique to visualize forest landscapes and simulate their future development according to alternative management scenarios. Gentle harvesting intensities were preferred for maintaining scenic values in a test of eliciting public’s preferences based on the simulated landscapes.
Context : Visualizations of future forest landscapes according to alternative management scenarios are useful for eliciting stakeholders’ preferences on the alternatives. However, conventional computer visualizations require laborious tree-wise measurements or simulators to generate these observations.
Aims : We describe and evaluate an alternative approach, in which the visualization is based on reconstructing forest canopy from sparse density, leaf-off airborne laser scanning data.
Methods : Computational geometry was employed to generate filtrations, i.e., ordered sets of simplices belonging to the three-dimensional triangulations of the point data. An appropriate degree of filtering was determined by analyzing the topological persistence of the filtrations. The topology was further utilized to simulate changes to canopy biomass, resembling harvests with varying retention levels. Relative priorities of recreational and scenic values of the harvests were estimated based on pairwise comparisons and analytic hierarchy process (AHP).
Results : The canopy elements were co-located with the tree stems measured in the field, and the visualizations derived from the entire landscape showed reasonably realistic, despite a low numerical correspondence with plot-level forest attributes. The potential and limitations to improve the proposed parameterization are discussed.
Conclusion : Although the criteria to evaluate the landscape visualization and simulation models were not conclusive, the results suggest that forest scenes may be feasibly reconstructed based on data already covering broad areas and readily available for practical applications.Numéro de notice : A2017-041 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1007/s13595-016-0598-6 Date de publication en ligne : 06/07/2017 En ligne : http://doi.org/10.1007/s13595-016-0598-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84199
in Annals of Forest Science > vol 74 n° 1 (March 2017)[article]