Détail de l'auteur
Auteur Charles J. Marsh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site / Yoni Gavish in ISPRS Journal of photogrammetry and remote sensing, vol 136 (February 2018)
[article]
Titre : Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site Type de document : Article/Communication Auteurs : Yoni Gavish, Auteur ; Jerome O’Connell, Auteur ; Charles J. Marsh, Auteur ; Cristina Tarantino, Auteur ; Palma Blonda, Auteur ; Valeria Tomaselli, Auteur ; William E. Kunin, Auteur Année de publication : 2018 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] classification
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] habitat (nature)
[Termes IGN] occupation du sol
[Termes IGN] performance
[Termes IGN] site Natura 2000Résumé : (Auteur) The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre‐defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2–3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into “black-box” based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps. Numéro de notice : A2018-071 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.12.002 Date de publication en ligne : 05/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.12.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89430
in ISPRS Journal of photogrammetry and remote sensing > vol 136 (February 2018) . - pp 1 - 12[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018023 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018022 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt