Détail de l'auteur
Auteur Palma Blonda |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Ailanthus altissima mapping from multi-temporal very high resolution satellite images / Cristina Tarantino in ISPRS Journal of photogrammetry and remote sensing, vol 147 (January 2019)
[article]
Titre : Ailanthus altissima mapping from multi-temporal very high resolution satellite images Type de document : Article/Communication Auteurs : Cristina Tarantino, Auteur ; Francesca Casella, Auteur ; Maria Adamo, Auteur ; Richard Lucas, Auteur ; Carl Beierkuhnlein, Auteur ; Palma Blonda, Auteur Année de publication : 2019 Article en page(s) : pp 90 - 103 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Ailanthus altissima
[Termes IGN] analyse diachronique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] espèce exotique envahissante
[Termes IGN] filtrage optique
[Termes IGN] filtre passe-bas
[Termes IGN] image à très haute résolution
[Termes IGN] image multitemporelle
[Termes IGN] image Worldview
[Termes IGN] indice de végétation
[Termes IGN] ItalieRésumé : (auteur) This study presents the results of multi-seasonal WorldView-2 (WV-2) satellite images classification for the mapping of Ailanthus altissima (A. altissima), an invasive plant species thriving in a protected grassland area of Southern Italy. The technique used relied on a two-stage hybrid classification process: the first stage applied a knowledge-driven learning scheme to provide a land cover map (LC), including deciduous vegetation and other classes, without the need of reference training data; the second stage exploited a data-driven classification to: (i) discriminate pixels of the invasive species found within the deciduous vegetation layer of the LC map; (ii) determine the most favourable seasons for such recognition. In the second stage, when a traditional Maximum Likelihood classifier was used, the results obtained with multi-temporal July and October WV-2 images, showed an output Overall Accuracy (OA) value of ≈91%. To increase such a value, first a low-pass median filtering was used with a resulting OA of 99.2%, then, a Support Vector Machine classifier was applied obtaining the best A. altissima User’s Accuracy (UA) and OA values of 82.47% and 97.96%, respectively, without any filtering. When instead of the full multi-spectral bands set some spectral vegetation indices computed from the same months were used the UA and OA values decreased. The findings reported suggest that multi-temporal, very high resolution satellite imagery can be effective for A. altissima mapping, especially when airborne hyperspectral data are unavailable. Since training data are required only in the second stage to discriminate A. altissima from other deciduous plants, the use of the first stage LC mapping as pre-filter can render the hybrid technique proposed cost and time effective. Multi-temporal VHR data and the hybrid system suggested may offer new opportunities for invasive plant monitoring and follow up of management decision. Numéro de notice : A2019-035 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.11.013 Date de publication en ligne : 20/11/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.11.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91972
in ISPRS Journal of photogrammetry and remote sensing > vol 147 (January 2019) . - pp 90 - 103[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019011 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019013 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2019012 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site / Yoni Gavish in ISPRS Journal of photogrammetry and remote sensing, vol 136 (February 2018)
[article]
Titre : Comparing the performance of flat and hierarchical Habitat/Land-Cover classification models in a NATURA 2000 site Type de document : Article/Communication Auteurs : Yoni Gavish, Auteur ; Jerome O’Connell, Auteur ; Charles J. Marsh, Auteur ; Cristina Tarantino, Auteur ; Palma Blonda, Auteur ; Valeria Tomaselli, Auteur ; William E. Kunin, Auteur Année de publication : 2018 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] classification
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] habitat (nature)
[Termes IGN] occupation du sol
[Termes IGN] performance
[Termes IGN] site Natura 2000Résumé : (Auteur) The increasing need for high quality Habitat/Land-Cover (H/LC) maps has triggered considerable research into novel machine-learning based classification models. In many cases, H/LC classes follow pre‐defined hierarchical classification schemes (e.g., CORINE), in which fine H/LC categories are thematically nested within more general categories. However, none of the existing machine-learning algorithms account for this pre-defined hierarchical structure. Here we introduce a novel Random Forest (RF) based application of hierarchical classification, which fits a separate local classification model in every branching point of the thematic tree, and then integrates all the different local models to a single global prediction. We applied the hierarchal RF approach in a NATURA 2000 site in Italy, using two land-cover (CORINE, FAO-LCCS) and one habitat classification scheme (EUNIS) that differ from one another in the shape of the class hierarchy. For all 3 classification schemes, both the hierarchical model and a flat model alternative provided accurate predictions, with kappa values mostly above 0.9 (despite using only 2.2–3.2% of the study area as training cells). The flat approach slightly outperformed the hierarchical models when the hierarchy was relatively simple, while the hierarchical model worked better under more complex thematic hierarchies. Most misclassifications came from habitat pairs that are thematically distant yet spectrally similar. In 2 out of 3 classification schemes, the additional constraints of the hierarchical model resulted with fewer such serious misclassifications relative to the flat model. The hierarchical model also provided valuable information on variable importance which can shed light into “black-box” based machine learning algorithms like RF. We suggest various ways by which hierarchical classification models can increase the accuracy and interpretability of H/LC classification maps. Numéro de notice : A2018-071 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.12.002 Date de publication en ligne : 05/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.12.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89430
in ISPRS Journal of photogrammetry and remote sensing > vol 136 (February 2018) . - pp 1 - 12[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018023 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018022 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt