Détail de l'autorité
ICIP 2015, 22nd IEEE International Conference on Image Processing 27/09/2015 30/09/2015 Québec Québec - Canada Proceedings IEEE
nom du congrès :
ICIP 2015, 22nd IEEE International Conference on Image Processing
début du congrès :
27/09/2015
fin du congrès :
30/09/2015
ville du congrès :
Québec
pays du congrès :
Québec - Canada
site des actes du congrès :
|
Documents disponibles (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Extending α-expansion to a larger set of regularization functions Type de document : Article/Communication Auteurs : Mathias Paget , Auteur ; Jean-Philippe Tarel, Auteur ; Laurent Caraffa , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2015 Conférence : ICIP 2015, 22nd IEEE International Conference on Image Processing 27/09/2015 30/09/2015 Québec Québec - Canada Proceedings IEEE Importance : pp 1051 - 1055 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] filtrage du bruit
[Termes IGN] méthode de réduction d'énergieRésumé : (auteur) Many problems of image processing lead to the minimization of an energy, which is a function of one or several given images, with respect to a binary or multi-label image. When this energy is made of unary data terms and of pairwise regularization terms, and when the pairwise regularization term is a metric, the multi-label energy can be minimized quite rapidly, using the so-called α-expansion algorithm. α-expansion consists in decomposing the multi-label optimization into a series of binary sub-problems called move. Depending on the chosen decomposition, a different condition on the regularization term applies. The metric condition for α-expansion move is rather restrictive. In many cases, the statistical model of the problem leads to an energy which is not a metric. Based on the enlightening article [1], we derive another condition for β-jump move. Finally, we propose an alternated scheme which can be used even if the energy fulfills neither the α-expansion nor β-jump condition. The proposed scheme applies to a much larger class of regularization functions, compared to α-expansion. This opens many possibilities of improvements on diverse image processing problems. We illustrate the advantages of the proposed optimization scheme on the image noise reduction problem. Numéro de notice : C2015-060 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/ICIP.2015.7350960 Date de publication en ligne : 10/12/2015 En ligne : https://doi.org/10.1109/ICIP.2015.7350960 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91815