Détail de l'auteur
Auteur Xiaogang Ma |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Parallel computing for fast spatiotemporal weighted regression / Xiang Que in Computers & geosciences, vol 150 (May 2021)
[article]
Titre : Parallel computing for fast spatiotemporal weighted regression Type de document : Article/Communication Auteurs : Xiang Que, Auteur ; Chao Ma, Auteur ; Xiaogang Ma, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 104723 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] calcul matriciel
[Termes IGN] étalonnage de modèle
[Termes IGN] modèle de régression
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] régression géographiquement pondérée
[Termes IGN] traitement parallèleRésumé : (auteur) The Spatiotemporal Weighted Regression (STWR) model is an extension of the Geographically Weighted Regression (GWR) model for exploring the heterogeneity of spatiotemporal processes. A key feature of STWR is that it utilizes the data points observed at previous time stages to make better fit and prediction at the latest time stage. Because the temporal bandwidths and a few other parameters need to be optimized in STWR, the model calibration is computationally intensive. In particular, when the data amount is large, the calibration of STWR becomes heavily time-consuming. For example, with 10,000 points in 10 time stages, it takes about 2307 s for a single-core PC to process the calibration of STWR. Both the distance and the weighted matrix in STWR are memory intensive, which may easily cause memory insufficiency as data amount increases. To improve the efficiency of computing, we developed a parallel computing method for STWR by employing the Message Passing Interface (MPI). A cache in the MPI processing approach was proposed for the calibration routine. Also, a matrix splitting strategy was designed to address the problem of memory insufficiency. We named the overall design as Fast STWR (F-STWR). In the experiment, we tested F-STWR in a High-Performance Computing (HPC) environment with a total number of 204,611 observations in 19 years. The results show that F-STWR can significantly improve STWR's capability of processing large-scale spatiotemporal data. Numéro de notice : A2021-300 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1016/j.cageo.2021.104723 Date de publication en ligne : 05/03/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104723 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97413
in Computers & geosciences > vol 150 (May 2021) . - n° 104723[article]Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree / Giyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
[article]
Titre : Local curvature entropy-based 3D terrain representation using a comprehensive Quadtree Type de document : Article/Communication Auteurs : Giyu Chen, Auteur ; Gang Liu, Auteur ; Xiaogang Ma, Auteur ; Gregoire Mariethoz, Auteur ; Zhenwen He, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 30 - 45 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbre quadratique
[Termes IGN] entropie
[Termes IGN] modèle numérique de terrain
[Termes IGN] niveau de détail
[Termes IGN] visualisation 3DRésumé : (Auteur) Large scale 3D digital terrain modeling is a crucial part of many real-time applications in geoinformatics. In recent years, the improved speed and precision in spatial data collection make the original terrain data more complex and bigger, which poses challenges for data management, visualization and analysis. In this work, we presented an effective and comprehensive 3D terrain representation based on local curvature entropy and a dynamic Quadtree. The Level-of-detail (LOD) models of significant terrain features were employed to generate hierarchical terrain surfaces. In order to reduce the radical changes of grid density between adjacent LODs, local entropy of terrain curvature was regarded as a measure of subdividing terrain grid cells. Then, an efficient approach was presented to eliminate the cracks among the different LODs by directly updating the Quadtree due to an edge-based structure proposed in this work. Furthermore, we utilized a threshold of local entropy stored in each parent node of this Quadtree to flexibly control the depth of the Quadtree and dynamically schedule large-scale LOD terrain. Several experiments were implemented to test the performance of the proposed method. The results demonstrate that our method can be applied to construct LOD 3D terrain models with good performance in terms of computational cost and the maintenance of terrain features. Our method has already been deployed in a geographic information system (GIS) for practical uses, and it is able to support the real-time dynamic scheduling of large scale terrain models more easily and efficiently. Numéro de notice : A2018-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.03.001 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.03.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89540
in ISPRS Journal of photogrammetry and remote sensing > vol 139 (May 2018) . - pp 30 - 45[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2018051 RAB Revue Centre de documentation En réserve L003 Disponible