Détail de l'auteur
Auteur Jia Song |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
An approach to measuring semantic relatedness of geographic terminologies using a thesaurus and lexical database sources / Zugang Chen in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : An approach to measuring semantic relatedness of geographic terminologies using a thesaurus and lexical database sources Type de document : Article/Communication Auteurs : Zugang Chen, Auteur ; Jia Song, Auteur ; Yaping Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] recherche d'information géographique
[Termes IGN] relation sémantique
[Termes IGN] représentation des connaissances
[Termes IGN] terminologie
[Termes IGN] thesaurusRésumé : (Auteur) In geographic information science, semantic relatedness is important for Geographic Information Retrieval (GIR), Linked Geospatial Data, geoparsing, and geo-semantics. But computing the semantic similarity/relatedness of geographic terminology is still an urgent issue to tackle. The thesaurus is a ubiquitous and sophisticated knowledge representation tool existing in various domains. In this article, we combined the generic lexical database (WordNet or HowNet) with the Thesaurus for Geographic Science and proposed a thesaurus–lexical relatedness measure (TLRM) to compute the semantic relatedness of geographic terminology. This measure quantified the relationship between terminologies, interlinked the discrete term trees by using the generic lexical database, and realized the semantic relatedness computation of any two terminologies in the thesaurus. The TLRM was evaluated on a new relatedness baseline, namely, the Geo-Terminology Relatedness Dataset (GTRD) which was built by us, and the TLRM obtained a relatively high cognitive plausibility. Finally, we applied the TLRM on a geospatial data sharing portal to support data retrieval. The application results of the 30 most frequently used queries of the portal demonstrated that using TLRM could improve the recall of geospatial data retrieval in most situations and rank the retrieval results by the matching scores between the query of users and the geospatial dataset. Numéro de notice : A2018-100 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : doi:10.3390/ijgi7030098 En ligne : https://doi.org/10.3390/ijgi7030098 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89515
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]Similarity measurement of metadata of geospatial data : an artificial neural network approach / Zugang Chen in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Similarity measurement of metadata of geospatial data : an artificial neural network approach Type de document : Article/Communication Auteurs : Zugang Chen, Auteur ; Jia Song, Auteur ; Yaping Yang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Infrastructure de données
[Termes IGN] données localisées
[Termes IGN] métadonnées
[Termes IGN] métadonnées géographiques
[Termes IGN] réseau neuronal artificiel
[Termes IGN] similitudeRésumé : (Auteur) To help users discover the most relevant spatial datasets in the ever-growing global spatial data infrastructures (SDIs), a number of similarity measures of geospatial data based on metadata have been proposed. Researchers have assessed the similarity of geospatial data according to one or more characteristics of the geospatial data. They created different similarity algorithms for each of the selected characteristics and then combined these elementary similarities to the overall similarity of the geospatial data. The existing combination methods are mainly linear and may not be the most accurate. This paper reports our experiences in attempting to learn the optimal non-linear similarity integration functions, from the knowledge of experts, using an artificial neural network. First, a multiple-layer feed forward neural network (MLFFN) was created. Then, the intrinsic characteristics were used to represent the metadata of geospatial data and the similarity algorithms for each of the intrinsic characteristics were built. The training and evaluation data of MLFFN were derived from the knowledge of domain experts. Finally, the MLFFN was trained, evaluated, and compared with traditional linear combination methods, which was mainly a weighted sum. The results show that our method outperformed the existing methods in terms of precision. Moreover, we found that the combination of elementary similarities of experts to the overall similarity of geospatial data was not linear. Numéro de notice : A2018-094 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030090 En ligne : https://doi.org/10.3390/ijgi7030090 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89506
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]