Détail de l'auteur
Auteur Shuliang Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Geographic information retrieval method for geography mark-up language data / Caili Fang in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Geographic information retrieval method for geography mark-up language data Type de document : Article/Communication Auteurs : Caili Fang, Auteur ; Shuliang Zhang, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] code source libre
[Termes IGN] GML
[Termes IGN] recherche d'information géographiqueRésumé : (Auteur) Geography Mark-up Language (GML) is the geographic information coding specification based on the Extensible Markup Language (XML) technology, which was developed by the Open GIS Consortium (OGC). GML expresses spatial and non-spatial attributes of geographic objects. Retrievals for traditional XML and geographic information have some limitations with respect to GML data, such as mismatching of the retrieval model, a single search form, and low retrieval quality. Based on analysis of the attributes, spatial relations, and structural features of GML data, this paper takes GML data elements as retrieval units and summarizes the GML retrieval mode. Then, the GML retrieval mode is constructed and formalized. On this basis, the GML Geographic Information Retrieval (GML_GIR) model is presented. The method implements the construction of a comprehensive index and the relative ordering of retrieval results by means of Lucene, an open-source full-text retrieval framework, and its components. For different features of GML data, corresponding relevance calculations are proposed. This study designs several different retrieval forms for GML data and simplifies the process of user information acquisitions. It provides reference methods for exploring geographical information retrieval based on semi-structured data represented by GML. Experimental results showed the efficiency and accuracy of the retrieval method. Numéro de notice : A2018-097 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030089 En ligne : https://doi.org/10.3390/ijgi7030089 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89509
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]