Détail de l'auteur
Auteur Peter Valent |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluation of close-range photogrammetry image collection methods for estimating tree diameters / Martin Mokroš in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Evaluation of close-range photogrammetry image collection methods for estimating tree diameters Type de document : Article/Communication Auteurs : Martin Mokroš, Auteur ; Xinlian Liang, Auteur ; Peter Surový, Auteur ; Peter Valent, Auteur ; Juraj Čerňava, Auteur ; et al., Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] angle de visée
[Termes IGN] diamètre des arbres
[Termes IGN] Fagus sylvatica
[Termes IGN] photogrammétrie métrologique
[Termes IGN] placette d'échantillonnage
[Termes IGN] semis de pointsRésumé : (Auteur) The potential of close-range photogrammetry (CRP) to compete with terrestrial laser scanning (TLS) to produce dense and accurate point clouds has increased in recent years. The use of CRP for estimating tree diameter at breast height (DBH) has multiple advantages over TLS. For example, point clouds from CRP are similar to TLS, but hardware costs are significantly lower. However, a number of data collection issues need to be clarified before the use of CRP in forested areas is considered effective. In this paper we focused on different CRP data collection methods to estimate DBH. We present seven methods that differ in camera orientation, shooting mode, data collection path, and other important factors. The methods were tested on a research plot comprised of European beeches (Fagus sylvatica L.). The circle-fitting algorithm was used to estimate DBH. Four of the seven methods were capable of producing a dense point cloud. The tree detection rate varied from 49% to 81%. Estimates of DBH produced a root mean square error that varied from 4.41 cm to 5.98 cm. The most accurate method was achieved using a vertical camera orientation, stop-and-go shooting mode, and a path leading around the plot with two diagonal paths through the plot. This method also had the highest rate of tree detection (81%). Numéro de notice : A2018-099 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030093 En ligne : https://doi.org/10.3390/ijgi7030093 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89514
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]