Détail de l'auteur
Auteur Tessio Novack |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Graph-based matching of points-of-interest from collaborative geo-datasets / Tessio Novack in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
[article]
Titre : Graph-based matching of points-of-interest from collaborative geo-datasets Type de document : Article/Communication Auteurs : Tessio Novack, Auteur ; Robin Peters, Auteur ; Alexander Zipf, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement de points
[Termes IGN] conflation
[Termes IGN] Foursquare
[Termes IGN] Londres
[Termes IGN] OpenStreetMap
[Termes IGN] point d'intérêt
[Termes IGN] similitudeRésumé : (Auteur) Several geospatial studies and applications require comprehensive semantic information from points-of-interest (POIs). However, this information is frequently dispersed across different collaborative mapping platforms. Surprisingly, there is still a research gap on the conflation of POIs from this type of geo-dataset. In this paper, we focus on the matching aspect of POI data conflation by proposing two matching strategies based on a graph whose nodes represent POIs and edges represent matching possibilities. We demonstrate how the graph is used for (1) dynamically defining the weights of the different POI similarity measures we consider; (2) tackling the issue that POIs should be left unmatched when they do not have a corresponding POI on the other dataset and (3) detecting multiple POIs from the same place in the same dataset and jointly matching these to the corresponding POI(s) from the other dataset. The strategies we propose do not require the collection of training samples or extensive parameter tuning. They were statistically compared with a “naive”, though commonly applied, matching approach considering POIs collected from OpenStreetMap and Foursquare from the city of London (England). In our experiments, we sequentially included each of our methodological suggestions in the matching procedure and each of them led to an increase in the accuracy in comparison to the previous results. Our best matching result achieved an overall accuracy of 91%, which is more than 10% higher than the accuracy achieved by the baseline method. Numéro de notice : A2018-103 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7030117 En ligne : https://doi.org/10.3390/ijgi7030117 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89518
in ISPRS International journal of geo-information > vol 7 n° 3 (March 2018)[article]