Détail de l'auteur
Auteur Yu Feng |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Determination of building flood risk maps from LiDAR mobile mapping data / Yu Feng in Computers, Environment and Urban Systems, vol 93 (April 2022)
[article]
Titre : Determination of building flood risk maps from LiDAR mobile mapping data Type de document : Article/Communication Auteurs : Yu Feng, Auteur ; Qing Xiao, Auteur ; Claus Brenner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101759 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] cartographie d'urgence
[Termes IGN] cartographie des risques
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] façade
[Termes IGN] infiltration
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] risque naturel
[Termes IGN] segmentation sémantiqueRésumé : (auteur) With increasing urbanization, flooding is a major challenge for many cities today. Based on forecast precipitation, topography, and pipe networks, flood simulations can provide early warnings for areas and buildings at risk of flooding. Basement windows, doors, and underground garage entrances are common places where floodwater can flow into a building. Some buildings have been prepared or designed considering the threat of flooding, but others have not. Therefore, knowing the heights of these facade openings helps to identify places that are more susceptible to water ingress. However, such data is not yet readily available in most cities. Traditional surveying of the desired targets may be used, but this is a very time-consuming and laborious process. Instead, mobile mapping using LiDAR (light detection and ranging) is an efficient tool to obtain a large amount of high-density 3D measurement data. To use this method, it is required to extract the desired facade openings from the data in a fully automatic manner. This research presents a new process for the extraction of windows and doors from LiDAR mobile mapping data. Deep learning object detection models are trained to identify these objects. Usually, this requires to provide large amounts of manual annotations.
In this paper, we mitigate this problem by leveraging a rule-based method. In a first step, the rule-based method is used to generate pseudo-labels. A semi-supervised learning strategy is then applied with three different levels of supervision. The results show that using only automatically generated pseudo-labels, the learning-based model outperforms the rule-based approach by 14.6% in terms of F1-score. After five hours of human supervision, it is possible to improve the model by another 6.2%. By comparing the detected facade openings' heights with the predicted water levels from a flood simulation model, a map can be produced which assigns per-building flood risk levels. Thus, our research provides a new geographic information layer for fine-grained urban emergency response. This information can be combined with flood forecasting to provide a more targeted disaster prevention guide for the city's infrastructure and residential buildings. To the best of our knowledge, this work is the first attempt to achieve such a large scale, fine-grained building flood risk mapping.Numéro de notice : A2022-196 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101759 Date de publication en ligne : 01/02/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99964
in Computers, Environment and Urban Systems > vol 93 (April 2022) . - n° 101759[article]Enhancing the resolution of urban digital terrain models using mobile mapping systems / Yu Feng in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol IV-4/W6 (October 2018)
[article]
Titre : Enhancing the resolution of urban digital terrain models using mobile mapping systems Type de document : Article/Communication Auteurs : Yu Feng, Auteur ; Claus Brenner, Auteur ; Monika Sester, Auteur Année de publication : 2018 Conférence : 3D GeoInfo 2018, ISPRS 13th international conference 01/10/2018 02/10/2018 Delft Pays-Bas ISPRS OA Annals Article en page(s) : pp 11 - 18 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] écoulement des eaux
[Termes IGN] Hanovre (Basse-Saxe)
[Termes IGN] modèle numérique de terrain
[Termes IGN] semis de points
[Termes IGN] zone urbaineRésumé : (auteur) Digital Terrain Models (DTMs) are essential surveying products for terrain based analyses, especially for overland flow modelling. Nowadays, many high resolution DTM products are generated by Airborne Laser Scanning (ALS). However, DTMs with even higher resolution are of great interest for a more precise overland flow modelling in urban areas. With the help of mobile mapping techniques, we can obtain much denser measurements of the ground in the vicinity of roads. In this research, a study area in Hannover, Germany was measured by a mobile mapping system. Point clouds from 485 scan strips were aligned and a DTM was extracted. In order to achieve a product with completeness, this mobile mapping produced DTM was then merged and adapted with a DTM product with 0.5 m resolution from a mapping agency. Systematic evaluations have been conducted with respect to the height accuracy of the DTM products. The results show that the final DTM product achieved a higher resolution (0.1 m) near the roads while essentially maintaining its height accuracy. Numéro de notice : A2018-291 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.5194/isprs-annals-IV-4-W6-11-2018 Date de publication en ligne : 12/09/2018 En ligne : https://doi.org/10.5194/isprs-annals-IV-4-W6-11-2018 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100955
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > vol IV-4/W6 (October 2018) . - pp 11 - 18[article]Extraction of pluvial flood relevant volunteered geographic information (VGI) by deep learning from user generated texts and photos / Yu Feng in ISPRS International journal of geo-information, vol 7 n° 2 (February 2018)
[article]
Titre : Extraction of pluvial flood relevant volunteered geographic information (VGI) by deep learning from user generated texts and photos Type de document : Article/Communication Auteurs : Yu Feng, Auteur ; Monika Sester, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] apprentissage profond
[Termes IGN] Berlin
[Termes IGN] cartographie des risques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] inondation
[Termes IGN] Londres
[Termes IGN] Paris (75)
[Termes IGN] protection civile
[Termes IGN] risque naturel
[Termes IGN] zone sinistrée
[Termes IGN] zone urbaineRésumé : (Auteur) In recent years, pluvial floods caused by extreme rainfall events have occurred frequently. Especially in urban areas, they lead to serious damages and endanger the citizens’ safety. Therefore, real-time information about such events is desirable. With the increasing popularity of social media platforms, such as Twitter or Instagram, information provided by voluntary users becomes a valuable source for emergency response. Many applications have been built for disaster detection and flood mapping using crowdsourcing. Most of the applications so far have merely used keyword filtering or classical language processing methods to identify disaster relevant documents based on user generated texts. As the reliability of social media information is often under criticism, the precision of information retrieval plays a significant role for further analyses. Thus, in this paper, high quality eyewitnesses of rainfall and flooding events are retrieved from social media by applying deep learning approaches on user generated texts and photos. Subsequently, events are detected through spatiotemporal clustering and visualized together with these high quality eyewitnesses in a web map application. Analyses and case studies are conducted during flooding events in Paris, London and Berlin. Numéro de notice : A2018-105 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7020039 En ligne : https://doi.org/10.3390/ijgi7020039 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89530
in ISPRS International journal of geo-information > vol 7 n° 2 (February 2018)[article]