Détail de l'auteur
Auteur Joseph St. Peter |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping forest characteristics at fine resolution across large landscapes of the southeastern united states using NAIP imagery and FIA field plot data / John Hogland in ISPRS International journal of geo-information, vol 7 n° 4 (April 2018)
[article]
Titre : Mapping forest characteristics at fine resolution across large landscapes of the southeastern united states using NAIP imagery and FIA field plot data Type de document : Article/Communication Auteurs : John Hogland, Auteur ; Nathaniel Anderson, Auteur ; Joseph St. Peter, Auteur ; Jason Drake, Auteur ; Paul Medley, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] composition floristique
[Termes IGN] densité du bois
[Termes IGN] Etats-Unis
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] Pinus (genre)
[Termes IGN] surface terrière
[Termes IGN] télédétection aérienne
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) Accurate information is important for effective management of natural resources. In the field of forestry, field measurements of forest characteristics such as species composition, basal area, and stand density are used to inform and evaluate management activities. Quantifying these metrics accurately across large landscapes in a meaningful way is extremely important to facilitate informed decision-making. In this study, we present a remote sensing based methodology to estimate species composition, basal area and stand tree density for pine and hardwood tree species at the spatial resolution of a Forest Inventory Analysis (FIA) program plot (78 m by 70 m). Our methodology uses textural metrics derived at this spatial scale to relate plot summaries of forest characteristics to remotely sensed National Agricultural Imagery Program (NAIP) aerial imagery across broad extents. Our findings quantify strong relationships between NAIP imagery and FIA field data. On average, models of basal area and trees per acre accounted for 43% of the variation in the FIA data, while models identifying species composition had less than 15.2% error in predicted class probabilities. Moreover, these relationships can be used to spatially characterize the condition of forests at fine spatial resolutions across broad extents. Numéro de notice : A2018-109 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7040140 En ligne : https://doi.org/10.3390/ijgi7040140 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89538
in ISPRS International journal of geo-information > vol 7 n° 4 (April 2018)[article]