Détail de l'auteur
Auteur Fahad Shahbaz Khan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification / Rama Rao Nidamanuri in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
[article]
Titre : Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification Type de document : Article/Communication Auteurs : Rama Rao Nidamanuri, Auteur ; Fahad Shahbaz Khan, Auteur ; Joost van de Weijer, Auteur ; Matthieu Molinier, Auteur ; Jorma Laaksonen, Auteur Année de publication : 2018 Article en page(s) : pp 74 - 85 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse texturale
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] image RVB
[Termes IGN] motif binaire local
[Termes IGN] réseau neuronal convolutif
[Termes IGN] texture d'imageRésumé : (Auteur) Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification. Numéro de notice : A2018-121 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.01.023 Date de publication en ligne : 15/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.01.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89590
in ISPRS Journal of photogrammetry and remote sensing > vol 138 (April 2018) . - pp 74 - 85[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt