Détail de l'auteur
Auteur Yanpeng Cao |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Active and incremental learning for semantic ALS point cloud segmentation / Yaping Lin in ISPRS Journal of photogrammetry and remote sensing, vol 169 (November 2020)
[article]
Titre : Active and incremental learning for semantic ALS point cloud segmentation Type de document : Article/Communication Auteurs : Yaping Lin, Auteur ; M. George Vosselman, Auteur ; Yanpeng Cao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 73 - 92 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] classification dirigée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] entropie
[Termes IGN] incertitude des données
[Termes IGN] itération
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Supervised training of a deep neural network for semantic segmentation of point clouds requires a large amount of labelled data. Nowadays, it is easy to acquire a huge number of points with high density in large-scale areas using current LiDAR and photogrammetric techniques. However it is extremely time-consuming to manually label point clouds for model training. In this paper, we propose an active and incremental learning strategy to iteratively query informative point cloud data for manual annotation and the model is continuously trained to adapt to the newly labelled samples in each iteration. We evaluate the data informativeness step by step and effectively and incrementally enrich the model knowledge. The data informativeness is estimated by two data dependent uncertainty metrics (point entropy and segment entropy) and one model dependent metric (mutual information). The proposed methods are tested on two datasets. The results indicate the proposed uncertainty metrics can enrich current model knowledge by selecting informative samples, such as considering points with difficult class labels and choosing target objects with various geometries in the labelled training pool. Compared to random selection, our metrics provide valuable information to significantly reduce the labelled training samples. In contrast with training from scratch, the incremental fine-tuning strategy significantly save the training time. Numéro de notice : A2020-638 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.09.003 Date de publication en ligne : 14/09/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.09.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96061
in ISPRS Journal of photogrammetry and remote sensing > vol 169 (November 2020) . - pp 73 - 92[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Video event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)
[article]
Titre : Video event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models Type de document : Article/Communication Auteurs : Michael Ying Yang, Auteur ; Wentong Liao, Auteur ; Yanpeng Cao, Auteur ; Bodo Rosenhahn, Auteur Année de publication : 2018 Article en page(s) : pp 203 - 214 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] apprentissage non-dirigé
[Termes IGN] approche hiérarchique
[Termes IGN] image vidéo
[Termes IGN] modèle de Markov
[Termes IGN] modèle orienté agent
[Termes IGN] séquence d'imagesRésumé : (Auteur) In this paper, we present an unsupervised learning framework for analyzing activities and interactions in surveillance videos. In our framework, three levels of video events are connected by Hierarchical Dirichlet Process (HDP) model: low-level visual features, simple atomic activities, and multi-agent interactions. Atomic activities are represented as distribution of low-level features, while complicated interactions are represented as distribution of atomic activities. This learning process is unsupervised. Given a training video sequence, low-level visual features are extracted based on optic flow and then clustered into different atomic activities and video clips are clustered into different interactions. The HDP model automatically decides the number of clusters, i.e., the categories of atomic activities and interactions. Based on the learned atomic activities and interactions, a training dataset is generated to train the Gaussian Process (GP) classifier. Then, the trained GP models work in newly captured video to classify interactions and detect abnormal events in real time. Furthermore, the temporal dependencies between video events learned by HDP-Hidden Markov Models (HMM) are effectively integrated into GP classifier to enhance the accuracy of the classification in newly captured videos. Our framework couples the benefits of the generative model (HDP) with the discriminant model (GP). We provide detailed experiments showing that our framework enjoys favorable performance in video event classification in real-time in a crowded traffic scene. Numéro de notice : A2018-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.4.203 Date de publication en ligne : 01/04/2018 En ligne : https://doi.org/10.14358/PERS.84.4.203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89689
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 4 (April 2018) . - pp 203 - 214[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018041 RAB Revue Centre de documentation En réserve L003 Disponible