Détail de l'auteur
Auteur Bodo Rosenhahn |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Video event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)
[article]
Titre : Video event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models Type de document : Article/Communication Auteurs : Michael Ying Yang, Auteur ; Wentong Liao, Auteur ; Yanpeng Cao, Auteur ; Bodo Rosenhahn, Auteur Année de publication : 2018 Article en page(s) : pp 203 - 214 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] apprentissage non-dirigé
[Termes IGN] approche hiérarchique
[Termes IGN] image vidéo
[Termes IGN] modèle de Markov
[Termes IGN] modèle orienté agent
[Termes IGN] séquence d'imagesRésumé : (Auteur) In this paper, we present an unsupervised learning framework for analyzing activities and interactions in surveillance videos. In our framework, three levels of video events are connected by Hierarchical Dirichlet Process (HDP) model: low-level visual features, simple atomic activities, and multi-agent interactions. Atomic activities are represented as distribution of low-level features, while complicated interactions are represented as distribution of atomic activities. This learning process is unsupervised. Given a training video sequence, low-level visual features are extracted based on optic flow and then clustered into different atomic activities and video clips are clustered into different interactions. The HDP model automatically decides the number of clusters, i.e., the categories of atomic activities and interactions. Based on the learned atomic activities and interactions, a training dataset is generated to train the Gaussian Process (GP) classifier. Then, the trained GP models work in newly captured video to classify interactions and detect abnormal events in real time. Furthermore, the temporal dependencies between video events learned by HDP-Hidden Markov Models (HMM) are effectively integrated into GP classifier to enhance the accuracy of the classification in newly captured videos. Our framework couples the benefits of the generative model (HDP) with the discriminant model (GP). We provide detailed experiments showing that our framework enjoys favorable performance in video event classification in real-time in a crowded traffic scene. Numéro de notice : A2018-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.4.203 Date de publication en ligne : 01/04/2018 En ligne : https://doi.org/10.14358/PERS.84.4.203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89689
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 4 (April 2018) . - pp 203 - 214[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018041 RAB Revue Centre de documentation En réserve L003 Disponible