Détail de l'auteur
Auteur Jianbo Tang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Recognizing building groups for generalization : a comparative study / Min Deng in Cartography and Geographic Information Science, Vol 45 n° 3 (May 2018)
[article]
Titre : Recognizing building groups for generalization : a comparative study Type de document : Article/Communication Auteurs : Min Deng, Auteur ; Jianbo Tang, Auteur ; Qiliang Liu, Auteur ; Fang Wu, Auteur Année de publication : 2018 Article en page(s) : pp 187 - 204 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de généralisation
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] contrainte géométrique
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] généralisation du bâti
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Recognition of building groups is a critical step in building generalization. To find building groups, various approaches have been developed based on the principles of grouping (or the Gestalt laws of grouping), and the effectiveness of these approaches needs to be evaluated. This study presents a comparative analysis of nine typical such approaches, including three approaches that only consider proximity principle and six approaches that consider multiple grouping principles. Real-life dataset at 1:5000, 1:10,000, and 1:50,000 scales provided by National Geomatics Center of China is used to evaluate the performance of these approaches. Buildings at smaller scales are used to construct the benchmarks to test the grouping results at larger scales, and the adjusted Rand index is adopted to indicate the accuracy of the detected groups. Significant tests (Friedman test and Wilcoxon signed-rank test) are also performed to provide both the overall and pairwise comparisons of these approaches. The results show that (1) the average accuracy of most existing approaches is between 0.3 and 0.5, and the performances of these approaches are significantly different; (2) when only proximity is considered, the buffer analysis approach performs significantly better than other approaches; (3) when multiple grouping principles are considered, the local constraint-based approach usually performs better than other approaches; (4) existing approaches that consider similarity and/or continuity seldom improve the performance of building grouping. Numéro de notice : A2018-129 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2017.1302821 Date de publication en ligne : 24/03/2017 En ligne : https://doi.org/10.1080/15230406.2017.1302821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89657
in Cartography and Geographic Information Science > Vol 45 n° 3 (May 2018) . - pp 187 - 204[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 032-2018031 RAB Revue Centre de documentation En réserve L003 Disponible