Détail de l'auteur
Auteur Dumisani Kutywayo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data / Abel Chemura in ISPRS Journal of photogrammetry and remote sensing, vol 138 (April 2018)
[article]
Titre : Mapping spatial variability of foliar nitrogen in coffee (Coffea arabica L.) plantations with multispectral Sentinel-2 MSI data Type de document : Article/Communication Auteurs : Abel Chemura, Auteur ; Onisimo Mutanga, Auteur ; John Odindi, Auteur ; Dumisani Kutywayo, Auteur Année de publication : 2018 Article en page(s) : pp 1 - 11 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture de précision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Coffea arabica
[Termes IGN] feuille (végétation)
[Termes IGN] image Sentinel-MSI
[Termes IGN] nutriment végétal
[Termes IGN] teneur en azoteRésumé : (auteur) Nitrogen (N) is the most limiting factor to coffee development and productivity. Therefore, development of rapid, spatially explicit and temporal remote sensing-based approaches to determine spatial variability of coffee foliar N are imperative for increasing yields, reducing production costs and mitigating environmental impacts associated with excessive N applications. This study sought to assess the value of Sentinel-2 MSI spectral bands and vegetation indices in empirical estimation of coffee foliar N content at landscape level. Results showed that coffee foliar N is related to Sentinel-2 MSI B4 (R2 = 0.32), B6 (R2 = 0.49), B7 (R2 = 0.42), B8 (R2 = 0.57) and B12 (R2 = 0.24) bands. Vegetation indices were more related to coffee foliar N as shown by the Inverted Red-Edge Chlorophyll Index – IRECI (R2 = 0.66), Relative Normalized Difference Index – RNDVI (R2 = 0.48), CIRE1 (R2 = 0.28), and Normalized Difference Infrared Index – NDII (R2 = 0.37). These variables were also identified by the random forest variable optimisation as the most valuable in coffee foliar N prediction. Modelling coffee foliar N using vegetation indices produced better accuracy (R2 = 0.71 with RMSE = 0.27 for all and R2 = 0.73 with RMSE = 0.25 for optimized variables), compared to using spectral bands (R2 = 0.57 with RMSE = 0.32 for all and R2 = 0.58 with RMSE = 0.32 for optimized variables). Combining optimized bands and vegetation indices produced the best results in coffee foliar N modelling (R2 = 0.78, RMSE = 0.23). All the three best performing models (all vegetation indices, optimized vegetation indices and combining optimal bands and optimal vegetation indices) established that 15.2 ha (4.7%) of the total area under investigation had low foliar N levels ( Numéro de notice : A2018-145 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.02.004 Date de publication en ligne : 10/02/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.02.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89753
in ISPRS Journal of photogrammetry and remote sensing > vol 138 (April 2018) . - pp 1 - 11[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018043 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018042 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt