Détail de l'auteur
Auteur Oguz Gungor |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images / Ekrem Saralioglu in Geocarto international, vol 37 n° 18 ([01/09/2022])
[article]
Titre : Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images Type de document : Article/Communication Auteurs : Ekrem Saralioglu, Auteur ; Oguz Gungor, Auteur Année de publication : 2022 Article en page(s) : pp 5433 - 5452 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] acquisition d'images
[Termes IGN] apprentissage profond
[Termes IGN] approche participative
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] couleur (variable spectrale)
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] étiquette
[Termes IGN] image multibande
[Termes IGN] OpenStreetMap
[Termes IGN] pixel
[Termes IGN] plateforme collaborative
[Termes IGN] texture d'image
[Termes IGN] WorldviewRésumé : (auteur) In order to solve insufficient training data problem in remote sensing, a web platform was created so that registered users can generate labeled data for various classes in a dynamic structure. Users were asked to select representative pixel groups for the forest, hazelnut, shadow, soil, tea, and building classes with the polygon tool, and then assign a class label corresponding to each created polygon thanks to the help document displaying descriptive information regarding the locations, colors, textures and distributions of the classes in the image. Crowdsourcing was again used to test the accuracy of the tagged data produced by crowdsourcing. The created data set was overlaid with the original WV-2 image, and the correctness of the labels of the polygons was once visually verified. Finally, the WV-2 image, consisting of 40 patches, was classified with CNN and an average of over 95% accuracy was achieved. Numéro de notice : A2022-702 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1917006 Date de publication en ligne : 26/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1917006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101561
in Geocarto international > vol 37 n° 18 [01/09/2022] . - pp 5433 - 5452[article]Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network / Ekrem Saralioglu in Geocarto international, vol 37 n° 2 ([15/01/2022])
[article]
Titre : Semantic segmentation of land cover from high resolution multispectral satellite images by spectral-spatial convolutional neural network Type de document : Article/Communication Auteurs : Ekrem Saralioglu, Auteur ; Oguz Gungor, Auteur Année de publication : 2022 Article en page(s) : pp 657 - 677 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] image Ikonos
[Termes IGN] image multibande
[Termes IGN] image Pléiades-HR
[Termes IGN] image Worldview
[Termes IGN] occupation du sol
[Termes IGN] segmentation sémantique
[Termes IGN] TurquieRésumé : (auteur) Research to improve the accuracy of very high-resolution satellite image classification algorithms is still one of the hot topics in the field of remote sensing. Successful results of deep learning methods in areas such as image classification and object detection have led to the application of these methods to remote sensing problems. Recently, Convolutional Neural Networks (CNNs) are among the most common deep learning methods used in image classification, however, the use of CNN’s in satellite image classification is relatively new. Due to the high computational complexity of 3D CNNs, which aim to extract both spatial and spectral information, 2D CNNs focussing on the extraction of spatial information are often preferred. High-resolution satellite images, however, contain crucial spectral information as well as spatial information. In this study, a 3D-2D CNN model using both spectral and spatial information was applied to extract more accurate land cover information from very high-resolution satellite images. The model was applied on a Worldview-2 satellite image including agricultural product areas such as tea, hazelnut groves and land use classes such as buildings and roads. The results of the CNN based model were also compared against those of the Support Vector Machine (SVM) and Random Forest (RF) algorithms. The post-classification accuracies were obtained using 800 control points generated by a web interface created for crowdsourcing purposes. The classification accuracy was 95.6% for the 3D-2D CNN model, 89.2% for the RF and 86.4% for the SVM. Numéro de notice : A2022-305 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2020.1734871 Date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1734871 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100379
in Geocarto international > vol 37 n° 2 [15/01/2022] . - pp 657 - 677[article]Comparison of the performances of ground filtering algorithms and DTM generation from a UAV-based point cloud / Cigdem Serifoglu Yilmaz in Geocarto international, vol 33 n° 5 (May 2018)
[article]
Titre : Comparison of the performances of ground filtering algorithms and DTM generation from a UAV-based point cloud Type de document : Article/Communication Auteurs : Cigdem Serifoglu Yilmaz, Auteur ; Oguz Gungor, Auteur Année de publication : 2018 Article en page(s) : pp 522 - 537 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage de points
[Termes IGN] interpolation
[Termes IGN] Matlab
[Termes IGN] modèle numérique de terrain
[Termes IGN] performance
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular Network
[Termes IGN] universitéRésumé : (Auteur) Ground filtering algorithms mainly focus on filtering LiDAR (Light Detection and Ranging) point clouds owing to their intrinsic characteristics to classify ground and non-ground points. However, the acquisition and processing of LiDAR data is still costly. Compared to LiDAR technology, UAVs (Unmanned Aerial Vehicle) are cheap and easy to use. In this study, the performances of five widely used ground filtering algorithms (Progressive Morphological 1D/2D, Maximum Local Slope, Elevation Threshold with Expand Window, and Adaptive TIN) were investigated by conducting qualitative and quantitative evaluations on UAV-based point clouds. Evaluation results indicated that the Adaptive TIN algorithm presented the best performance. The result of the Adaptive TIN algorithm was interpolated by using a MATLAB script to generate the DTM (Digital Terrain Model). Field measurements indicated that using UAV-based point clouds may be a reasonable alternative for LiDAR data, depending on the characteristics of the study area. Numéro de notice : A2018-141 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2016.1265599 Date de publication en ligne : 07/12/2016 En ligne : https://doi.org/10.1080/10106049.2016.1265599 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89691
in Geocarto international > vol 33 n° 5 (May 2018) . - pp 522 - 537[article]