Détail de l'auteur
Auteur Lubor Ladicky |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Large-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net / Timo Hackel in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 5 (mai 2018)
[article]
Titre : Large-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net Type de document : Article/Communication Auteurs : Timo Hackel, Auteur ; Jan Dirk Wegner, Auteur ; Nikolay Savinov, Auteur ; Lubor Ladicky, Auteur ; Konrad Schindler, Auteur ; Marc Pollefeys, Auteur Année de publication : 2018 Article en page(s) : pp 297 - 308 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] réseau neuronal convolutif
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (Auteur) In this paper, we review current state-of-the-art in 3D point cloud classification, present a new 3D point cloud classification benchmark data set of single scans with over four billion manually labeled points, and discuss first available results on the benchmark. Much of the stunning recent progress in 2D image interpretation can be attributed to the availability of large amounts of training data, which have enabled the (supervised) learning of deep neural networks. With the data set presented in this paper, we aim to boost the performance of CNNs also for 3D point cloud labeling. Our hope is that this will lead to a breakthrough of deep learning also for 3D (geo-) data. The semantic3D.net data set consists of dense point clouds acquired with static terrestrial laser scanners. It contains eight semantic classes and covers a wide range of urban outdoor scenes, including churches, streets, railroad tracks, squares, villages, soccer fields, and castles. We describe our labeling interface and show that, compared to those already available to the research community, our data set provides denser and more complete point clouds, with a much higher overall number of labeled points. We further provide descriptions of baseline methods and of the first independent submissions, which are indeed based on CNNs, and already show remarkable improvements over prior art. We hope that semantic3D.net will pave the way for deep learning in 3D point cloud analysis, and for 3D representation learning in general. Numéro de notice : A2018-162 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.5.297 Date de publication en ligne : 01/05/2018 En ligne : https://doi.org/10.14358/PERS.84.5.297 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89795
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 5 (mai 2018) . - pp 297 - 308[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018051 RAB Revue Centre de documentation En réserve L003 Disponible