Détail de l'auteur
Auteur Zhi Li |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Accurate detection of built-up areas from high-resolution remote sensing imagery using a fully convolutional network / Yihua Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
[article]
Titre : Accurate detection of built-up areas from high-resolution remote sensing imagery using a fully convolutional network Type de document : Article/Communication Auteurs : Yihua Tan, Auteur ; Shengzhou Xiong, Auteur ; Zhi Li, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 737 - 752 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) The analysis of built-up areas has always been a popular research topic for remote sensing applications. However, automatic extraction of built-up areas from a wide range of regions remains challenging. In this article, a fully convolutional network (FCN)–based strategy is proposed to address built-up area extraction. The proposed algorithm can be divided into two main steps. First, divide the remote sensing image into blocks and extract their deep features by a lightweight multi-branch convolutional neural network (LMB-CNN). Second, rearrange the deep features into feature maps that are fed into a well-designed FCN for image segmentation. Our FCN is integrated with multi-branch blocks and outputs multi-channel segmentation masks that are utilized to balance the false alarm and missing alarm. Experiments demonstrate that the overall classification accuracy of the proposed algorithm can achieve 98.75% in the test data set and that it has a faster processing compared with the existing state-of-the-art algorithms. Numéro de notice : A2019-522 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.10.737 Date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.14358/PERS.85.10.737 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93992
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 10 (October 2019) . - pp 737 - 752[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019101 SL Revue Centre de documentation Revues en salle Disponible Learning multiscale deep features for high-resolution satellite image scene classification / Qingshan Liu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
[article]
Titre : Learning multiscale deep features for high-resolution satellite image scene classification Type de document : Article/Communication Auteurs : Qingshan Liu, Auteur ; Renlong Hang, Auteur ; Huihui Song, Auteur ; Zhi Li, Auteur Année de publication : 2018 Article en page(s) : pp 117 - 126 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification
[Termes IGN] image satellite
[Termes IGN] méthode fondée sur le noyau
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) In this paper, we propose a multiscale deep feature learning method for high-resolution satellite image scene classification. Specifically, we first warp the original satellite image into multiple different scales. The images in each scale are employed to train a deep convolutional neural network (DCNN). However, simultaneously training multiple DCNNs is time-consuming. To address this issue, we explore DCNN with spatial pyramid pooling (SPP-net). Since different SPP-nets have the same number of parameters, which share the identical initial values, and only fine-tuning the parameters in fully connected layers ensures the effectiveness of each network, thereby greatly accelerating the training process. Then, the multiscale satellite images are fed into their corresponding SPP-nets, respectively, to extract multiscale deep features. Finally, a multiple kernel learning method is developed to automatically learn the optimal combination of such features. Experiments on two difficult data sets show that the proposed method achieves favorable performance compared with other state-of-the-art methods. Numéro de notice : A2018-185 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2743243 Date de publication en ligne : 13/09/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2743243 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89842
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 1 (January 2018) . - pp 117 - 126[article]