Détail de l'auteur
Auteur Da He |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network / Da He in International journal of applied Earth observation and geoinformation, vol 106 (February 2022)
[article]
Titre : Generating 2m fine-scale urban tree cover product over 34 metropolises in China based on deep context-aware sub-pixel mapping network Type de document : Article/Communication Auteurs : Da He, Auteur ; Qian Shi, Auteur ; Xiaoping Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102667 Note générale : bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse infrapixellaire
[Termes IGN] apprentissage profond
[Termes IGN] arbre hors forêt
[Termes IGN] arbre urbain
[Termes IGN] base de données localisées
[Termes IGN] Chine
[Termes IGN] image Sentinel-MSI
[Termes IGN] métropole
[Termes IGN] Pékin (Chine)
[Termes IGN] prise en compte du contexte
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Contrast to the global forest, few trees live in cities but contribute significantly to urban environment and human health. However, the classical satellite-derived land cover/forest cover products with limited resolution are not fine enough for the identification of urban tree, which is usually appeared in small size and intersected with infrastructure. To relieve the dilemma, this study developed an urban tree specific sub-pixel mapping (SPM) architecture with deep learning approach, which aimed to generate 2m fine-scale urban tree cover product from 10 m Sentinel-2 images for large-scale area of 34 metropolises in China. The proposed approach has remarkable reconstruction ability for delineating the contextual characteristic of the urban tree patterns, and reliable generalization ability to large-scale area. In addition, this study creates a large-volume urban tree cover dataset (UTCD) with 0.13 billion urban tree samples at 2 m resolution, which fills the deficiency of standard dataset in urban tree cover research field. Quantitative analysis of our products was conducted on two typical study sites of Beijing and Wuhan. The results show that our products recover averagely more than 58.72% of urban tree covers that have been underestimated in the existing land cover/forest cover products, and outperforms the state-of-the-art approach both visually and quantitatively, by averagely 11.31% improvement in overall accuracy. From our annual products during 2016–2020, we found an evolution characteristic of urban tree cover: it is more stable in developed cities like Beijing, while more fluctuated in developing cities like Wuhan, and the alteration are usually concentrated at the outer-ring of downtown, which may be caused by the municipal planning and the land development of real estate industry. Numéro de notice : A2022-073 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2021.102667 En ligne : https://doi.org/10.1016/j.jag.2021.102667 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99438
in International journal of applied Earth observation and geoinformation > vol 106 (February 2022) . - n° 102667[article]Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection / Da He in IEEE Transactions on geoscience and remote sensing, vol 58 n° 3 (March 2020)
[article]
Titre : Spectral–spatial–temporal MAP-based sub-pixel mapping for land-cover change detection Type de document : Article/Communication Auteurs : Da He, Auteur ; Yanfei Zhong, Auteur ; Liangpei Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 1696 - 1717 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification du maximum a posteriori
[Termes IGN] détection de changement
[Termes IGN] distribution spatiale
[Termes IGN] données spatiotemporelles
[Termes IGN] image Aqua-MODIS
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-TM
[Termes IGN] image multibande
[Termes IGN] image Quickbird
[Termes IGN] image Terra-MODIS
[Termes IGN] modèle dynamique
[Termes IGN] optimisation spatiale
[Termes IGN] précision infrapixellaire
[Termes IGN] série temporelle
[Termes IGN] urbanisation
[Termes IGN] Wuhan (Chine)
[Termes IGN] zone urbaineRésumé : (Auteur) The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral–spatial–temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China. Numéro de notice : A2020-088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947708 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947708 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94662
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 3 (March 2020) . - pp 1696 - 1717[article]Multiobjective subpixel land-cover mapping / Ailong Ma in IEEE Transactions on geoscience and remote sensing, vol 56 n° 1 (January 2018)
[article]
Titre : Multiobjective subpixel land-cover mapping Type de document : Article/Communication Auteurs : Ailong Ma, Auteur ; Yanfei Zhong, Auteur ; Da He, Auteur ; Liangpei Zhang, Auteur Année de publication : 2018 Article en page(s) : pp 422 - 435 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] image hyperspectrale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] problème inverseRésumé : (Auteur) The hyperspectral subpixel mapping (SPM) technique can generate a land-cover map at the subpixel scale by modeling the relationship between the abundance map and the spatial distribution image of the subpixels. However, this is an inverse ill-posed problem. The most widely used way to resolve the problem is to introduce additional information as a regularization term and acquire the unique optimal solution. However, the regularization parameter either needs to be determined manually or it cannot be determined in a fully adaptive manner. Thus, in this paper, the multiobjective subpixel land-cover mapping (MOSM) framework for hyperspectral remote sensing imagery is proposed, in which the two function terms [the fidelity term and the prior term (i.e., the regularization term)] can be optimized simultaneously, and there is no need to determine the regularization parameter explicitly. In order to achieve this goal, two strategies are designed in MOSM: 1) a high-resolution distribution image-based individual encoding strategy is designed in order to calculate the prior term accurately and 2) a subfitness-based individual comparison strategy is designed in order to generate subpixel land-cover mapping solutions with a high quality to update the population. Four data sets (one simulated, two synthetic, and one real hyperspectral image) were used to test the proposed method. The experimental results show that MOSM can perform better than the other subpixel land-cover mapping methods, demonstrating the effectiveness of MOSM in balancing the fidelity term and prior term in the SPM model. Numéro de notice : A2018-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2748701 Date de publication en ligne : 10/11/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2748701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89845
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 1 (January 2018) . - pp 422 - 435[article]