Détail de l'auteur
Auteur Michael Horswell |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Exploring the sensitivity of coastal inundation modelling to DEM vertical error / Harry West in International journal of geographical information science IJGIS, vol 32 n° 5-6 (May - June 2018)
[article]
Titre : Exploring the sensitivity of coastal inundation modelling to DEM vertical error Type de document : Article/Communication Auteurs : Harry West, Auteur ; Michael Horswell, Auteur ; Nevil Quinn, Auteur Année de publication : 2018 Article en page(s) : pp 1172 - 1193 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse de sensibilité
[Termes IGN] erreur en altitude
[Termes IGN] estuaire
[Termes IGN] incertitude géométrique
[Termes IGN] inondation
[Termes IGN] littoral
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle numérique de surface
[Termes IGN] montée du niveau de la mer
[Termes IGN] Royaume-UniRésumé : (Auteur) As sea level is projected to rise throughout the twenty-first century due to climate change, there is a need to ensure that sea level rise (SLR) models accurately and defensibly represent future flood inundation levels to allow for effective coastal zone management. Digital elevation models (DEMs) are integral to SLR modelling, but are subject to error, including in their vertical resolution. Error in DEMs leads to uncertainty in the output of SLR inundation models, which if not considered, may result in poor coastal management decisions. However, DEM error is not usually described in detail by DEM suppliers; commonly only the RMSE is reported. This research explores the impact of stated vertical error in delineating zones of inundation in two locations along the Devon, United Kingdom, coastline (Exe and Otter Estuaries). We explore the consequences of needing to make assumptions about the distribution of error in the absence of detailed error data using a 1 m, publically available composite DEM with a maximum RMSE of 0.15 m, typical of recent LiDAR-derived DEMs. We compare uncertainty using two methods (i) the NOAA inundation uncertainty mapping method which assumes a normal distribution of error and (ii) a hydrologically correct bathtub method where the DEM is uniformly perturbed between the upper and lower bounds of a 95% linear error in 500 Monte Carlo Simulations (HBM+MCS). The NOAA method produced a broader zone of uncertainty (an increase of 134.9% on the HBM+MCS method), which is particularly evident in the flatter topography of the upper estuaries. The HBM+MCS method generates a narrower band of uncertainty for these flatter areas, but very similar extents where shorelines are steeper. The differences in inundation extents produced by the methods relate to a number of underpinning assumptions, and particularly, how the stated RMSE is interpreted and used to represent error in a practical sense. Unlike the NOAA method, the HBM+MCS model is computationally intensive, depending on the areas under consideration and the number of iterations. We therefore used the HBM+ MCS method to derive a regression relationship between elevation and inundation probability for the Exe Estuary. We then apply this to the adjacent Otter Estuary and show that it can defensibly reproduce zones of inundation uncertainty, avoiding the computationally intensive step of the HBM+MCS. The equation-derived zone of uncertainty was 112.1% larger than the HBM+MCS method, compared to the NOAA method which produced an uncertain area 423.9% larger. Each approach has advantages and disadvantages and requires value judgements to be made. Their use underscores the need for transparency in assumptions and communications of outputs. We urge DEM publishers to move beyond provision of a generalised RMSE and provide more detailed estimates of spatial error and complete metadata, including locations of ground control points and associated land cover. Numéro de notice : A2018-203 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1444165 Date de publication en ligne : 14/03/2018 En ligne : https://doi.org/10.1080/13658816.2018.1444165 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89874
in International journal of geographical information science IJGIS > vol 32 n° 5-6 (May - June 2018) . - pp 1172 - 1193[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2018031 RAB Revue Centre de documentation En réserve L003 Disponible