Détail de l'auteur
Auteur Ting Ma |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization / Si Song in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)
[article]
Titre : Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization Type de document : Article/Communication Auteurs : Si Song, Auteur ; Tao Pei, Auteur ; Ting Ma, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 134 - 154 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] données localisées
[Termes IGN] migration pendulaire
[Termes IGN] modèle statistique
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] origine - destinationMots-clés libres : logarithme du rapport de vraisemblance log likelihood ratio (LLR) Résumé : (auteur) An origin-destination (OD) flow can be defined as the movement of objects between two locations. These movements must be determined for a range of purposes, and strong interactions can be visually represented via clustering of OD flows. Identification of such clusters may be useful in urban planning, traffic planning and logistics management research. However, few methods can identify arbitrarily shaped flow clusters. Here, we present a spatial scan statistical approach based on ant colony optimization (ACO) for detecting arbitrarily shaped clusters of OD flows (AntScan_flow). In this study, an OD flow cluster is defined as a regional pair with significant log likelihood ratio (LLR), and the ACO is employed to detect the clusters with maximum LLRs in the search space. Simulation experiments based on AntScan_flow and SaTScan_flow show that AntScan_flow yields better performance based on accuracy but requires a large computational demand. Finally, a case study of the morning commuting flows of Beijing residents was conducted. The AntScan_flow results show that the regions associated with moderate- and long-distance commuting OD flow clusters are highly consistent with subway lines and highways in the city. Additionally, the regions of short-distance commuting OD flow clusters are more likely to exhibit ‘residential-area to work-area’ patterns. Numéro de notice : A2019-019 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1516287 Date de publication en ligne : 10/09/2018 En ligne : https://doi.org/10.1080/13658816.2018.1516287 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91684
in International journal of geographical information science IJGIS > Vol 33 n° 1-2 (January - February 2019) . - pp 134 - 154[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2019011 RAB Revue Centre de documentation En réserve L003 Disponible Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records / Zhang Liu in Transactions in GIS, vol 22 n° 2 (April 2018)
[article]
Titre : Mapping hourly dynamics of urban population using trajectories reconstructed from mobile phone records Type de document : Article/Communication Auteurs : Zhang Liu, Auteur ; Ting Ma, Auteur ; Yunyan Du, Auteur ; Tao Pei, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 494 - 513 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse spatio-temporelle
[Termes IGN] carte thématique
[Termes IGN] cartographie des flux
[Termes IGN] classification par réseau neuronal
[Termes IGN] mobilité urbaine
[Termes IGN] population urbaine
[Termes IGN] régression
[Termes IGN] téléphone intelligent
[Termes IGN] trace numérique
[Termes IGN] trajet (mobilité)Résumé : (Auteur) Understanding the spatiotemporal dynamics of urban population is crucial for addressing a wide range of urban planning and management issues. Aggregated geospatial big data have been widely used to quantitatively estimate population distribution at fine spatial scales over a given time period. However, it is still a challenge to estimate population density at a fine temporal resolution over a large geographical space, mainly due to the temporal asynchrony of population movement and the challenges to acquiring a complete individual movement record. In this article, we propose a method to estimate hourly population density by examining the time‐series individual trajectories, which were reconstructed from call detail records using BP neural networks. We first used BP neural networks to predict the positions of mobile phone users at an hourly interval and then estimated the hourly population density using log‐linear regression at the cell tower level. The estimated population density is linearly correlated with population census data at the sub‐district level. Trajectory clustering results show five distinct diurnal dynamic patterns of population movement in the study area, revealing spatially explicit characteristics of the diurnal commuting flows, though the driving forces of the flows need further investigation. Numéro de notice : A2018-215 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12323 Date de publication en ligne : 26/02/2018 En ligne : https://doi.org/10.1111/tgis.12323 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90006
in Transactions in GIS > vol 22 n° 2 (April 2018) . - pp 494 - 513[article]