Détail de l'auteur
Auteur Lianru Gao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multisource remote sensing data classification based on convolutional neural network / Xiaodong Xu in IEEE Transactions on geoscience and remote sensing, vol 56 n° 2 (February 2018)
[article]
Titre : Multisource remote sensing data classification based on convolutional neural network Type de document : Article/Communication Auteurs : Xiaodong Xu, Auteur ; Wei Li, Auteur ; Qiong Ran, Auteur ; Qian Du, Auteur ; Lianru Gao, Auteur ; Bing Zhang, Auteur Année de publication : 2018 Article en page(s) : pp 937 - 949 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image hyperspectrale
[Termes IGN] réseau neuronal convolutifRésumé : (Auteur) As a list of remotely sensed data sources is available, how to efficiently exploit useful information from multisource data for better Earth observation becomes an interesting but challenging problem. In this paper, the classification fusion of hyperspectral imagery (HSI) and data from other multiple sensors, such as light detection and ranging (LiDAR) data, is investigated with the state-of-the-art deep learning, named the two-branch convolution neural network (CNN). More specific, a two-tunnel CNN framework is first developed to extract spectral-spatial features from HSI; besides, the CNN with cascade block is designed for feature extraction from LiDAR or high-resolution visual image. In the feature fusion stage, the spatial and spectral features of HSI are first integrated in a dual-tunnel branch, and then combined with other data features extracted from a cascade network. Experimental results based on several multisource data demonstrate the proposed two-branch CNN that can achieve more excellent classification performance than some existing methods. Numéro de notice : A2018-191 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2756851 Date de publication en ligne : 16/10/2017 En ligne : https://doi.org/10.1109/TGRS.2017.2756851 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89856
in IEEE Transactions on geoscience and remote sensing > vol 56 n° 2 (February 2018) . - pp 937 - 949[article]