Détail de l'auteur
Auteur Sebastian Tuttas |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
A voxel- and graph-based strategy for segmenting man-made infrastructures using perceptual grouping laws: comparison and evaluation / Yusheng Xu in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 6 (juin 2018)
[article]
Titre : A voxel- and graph-based strategy for segmenting man-made infrastructures using perceptual grouping laws: comparison and evaluation Type de document : Article/Communication Auteurs : Yusheng Xu, Auteur ; Ludwig Hoegner, Auteur ; Sebastian Tuttas, Auteur ; Uwe Stilla, Auteur Année de publication : 2018 Article en page(s) : pp 377 - 391 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] bati
[Termes IGN] données localisées 3D
[Termes IGN] octree
[Termes IGN] partition des données
[Termes IGN] prise en compte du contexte
[Termes IGN] reconstruction 3D
[Termes IGN] scène urbaine
[Termes IGN] segmentation
[Termes IGN] semis de points
[Termes IGN] théorie des graphes
[Termes IGN] voxelRésumé : (auteur) In this paper, we report a novel strategy for segmenting 3D point clouds using a voxel structure and graph-based clustering with perceptual grouping laws. It provides a completely automatic solution for partitioning point clouds of man-made infrastructure. Two different segmentation methods using voxel and supervoxel structures are presented and evaluated. To increase the efficiency and the robustness of the segmentation process, the voxelization with octree-based structure is introduced, which can suppress effects of noise, outliers, and unevenly distributed point densities as well. The clustering of over-segmented voxels and supervoxels is achieved using graph theory on the basis of the local contextual information, which is commonly conducted merely with pairwise information in conventional clustering algorithms. The graphical model is constructed according to perceptual grouping laws, considering geometric information associated with points. Experiments using both laser scanning and photogrammetric point clouds have demonstrated that the proposed methods can achieve good results, especially complex scenes and nonplanar object surfaces, with F1-measures better than 0.67 for all the testing samples. Quantitative comparisons between the proposed approaches and other representative segmentation methods also confirm the effectiveness and the efficiency of the former. Moreover, a series of experiments is carried out, to investigate the methods' sensitivity with respect to various parameters on the segmentation results. Numéro de notice : A2018-231 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.6.377 Date de publication en ligne : 01/06/2018 En ligne : https://doi.org/10.14358/PERS.84.6.377 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90173
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 6 (juin 2018) . - pp 377 - 391[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018061 RAB Revue Centre de documentation En réserve L003 Disponible