Détail de l'auteur
Auteur Cyril Wendl |
Documents disponibles écrits par cet auteur (6)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Multimodal scene understanding: algorithms, applications and deep learning, ch. 11. Decision fusion of remote-sensing data for land cover classification / Arnaud Le Bris (2019)
Titre de série : Multimodal scene understanding: algorithms, applications and deep learning, ch. 11 Titre : Decision fusion of remote-sensing data for land cover classification Type de document : Chapitre/Contribution Auteurs : Arnaud Le Bris , Auteur ; Nesrine Chehata , Auteur ; Walid Ouerghemmi , Auteur ; Cyril Wendl, Auteur ; Tristan Postadjian , Auteur ; Anne Puissant, Auteur ; Clément Mallet , Auteur Editeur : Londres, New York : Academic Press Année de publication : 2019 Importance : pp 341 - 382 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] fusion de données multisource
[Termes IGN] image à très haute résolution
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (Auteur) Very high spatial resolution (VHR) multispectral imagery enables a fine delineation of objects and a possible use of texture information. Other sensors provide a lower spatial resolution but an enhanced spectral or temporal information, permitting one to consider richer land cover semantics. So as to benefit from the complementary characteristics of these multimodal sources, a decision late fusion scheme is proposed. This makes it possible to benefit from the full capacities of each sensor, while dealing with both semantic and spatial uncertainties. The different remote-sensing modalities are first classified independently. Separate class membership maps are calculated and then merged at the pixel level, using decision fusion rules. A final label map is obtained from a global regularization scheme in order to deal with spatial uncertainties while conserving the contrasts from the initial images. It relies on a probabilistic graphical model involving a fit-to-data term related to merged class membership measures and an image-based contrast-sensitive regularization term. Conflict between sources can also be integrated into this scheme. Two experimental cases are presented. In the first case one considers the fusion of VHR multispectral imagery with lower spatial resolution hyperspectral imagery for fine-grained land cover classification problem in dense urban areas. In the second case one uses SPOT 6/7 satellite imagery and Sentinel-2 time series to extract urban area footprints through a two-step process: classifications are first merged in order to detect building objects, from which a urban area prior probability is derived and eventually merged to Sentinel-2 classification output for urban footprint detection. Numéro de notice : H2019-002 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Chapître / contribution nature-HAL : ChOuvrScient DOI : 10.1016/B978-0-12-817358-9.00017-2 Date de publication en ligne : 02/08/2019 En ligne : https://doi.org/10.1016/B978-0-12-817358-9.00017-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93303 Fusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl in Revue Française de Photogrammétrie et de Télédétection, n° 217-218 (juin - septembre 2018)
[article]
Titre : Fusion tardive d’images SPOT 6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine Type de document : Article/Communication Auteurs : Cyril Wendl, Auteur ; Arnaud Le Bris , Auteur ; Nesrine Chehata , Auteur ; Anne Puissant, Auteur ; Tristan Postadjian , Auteur Année de publication : 2018 Projets : GeoSud / Article en page(s) : pp 87 - 97 Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification pixellaire
[Termes IGN] contraste local
[Termes IGN] détection du bâti
[Termes IGN] fusion d'images
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] régularisation
[Termes IGN] réseau neuronal convolutif
[Termes IGN] segmentation d'image
[Termes IGN] surface imperméableRésumé : (auteur) La fusion d'images multispectrales à très haute résolution spatiale (THR) avec des séries temporelles d'images moins résolues spatialement mais comportant plus de bandes spectrales permet d'améliorer la classification de l'occupation du sol. Elle permet en effet de tirer le meilleur parti des points forts, respectivement, géométriques et sémantiques de ces deux sources. Le travail proposé ici s'intéresse à un processus d'extraction automatique de la tache urbaine fondé sur la fusion tardive de classifications obtenues respectivement à partir d'images satellitaires Sentinel-2 et SPOT 6/7. Ces deux sources sont d'abord analysées indépendamment selon 5 classes, respectivement par Forêt Aléatoire et réseaux de neurones convolutifs. Les résultats sont alors fusionnés afin d'extraire les bâtiments le plus finement possible. Cette étape de fusion inclut une fusion au niveau pixellaire, suivie d'une étape de régularisation spatiale intégrant un terme lié au contraste de l'image. Le résultat obtenu connaît ensuite une seconde fusion afin d'en déduire la-tache urbaine en elle-même : une mesure a priori de zone urbaine est calculée à partir des objets bâtiments détectés au préalable, puis fusionnée avec une classification binaire dérivée de la classification originale des données Sentinel-2. Les résultats montrent bien la complémentarité des deux sources de données ainsi que la pertinence de l'adoption d'une stratégie de fusion tardive. Numéro de notice : A2018-512 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.52638/rfpt.2018.415 En ligne : https://doi.org/10.52638/rfpt.2018.415 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91266
in Revue Française de Photogrammétrie et de Télédétection > n° 217-218 (juin - septembre 2018) . - pp 87 - 97[article]Decision fusion of SPOT6 and multitemporal Sentinel2 images for urban area detection / Cyril Wendl (2018)
Titre : Decision fusion of SPOT6 and multitemporal Sentinel2 images for urban area detection Type de document : Article/Communication Auteurs : Cyril Wendl, Auteur ; Arnaud Le Bris , Auteur ; Nesrine Chehata , Auteur ; Anne Puissant, Auteur ; Tristan Postadjian , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2018 Projets : 2-Pas d'info accessible - article non ouvert / Conférence : IGARSS 2018, IEEE International Geoscience And Remote Sensing Symposium, observing, understanding and forecasting the dynamics of our planet 22/07/2018 27/07/2018 Valencia Espagne Proceedings IEEE Importance : pp 1734 - 1737 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification dirigée
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] détection du bâti
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] réseau neuronal convolutifRésumé : (auteur) Fusion of very high spatial resolution multispectral (VHR) images and lower spatial resolution image time series with more spectral bands can improve land cover classification’ combining geometric and semantic advantages of both sources. This study presents a workflow to extract the extent of urban areas using decision-level fusion of individual classifications on Sentine12 (S2) and SPOT6 satellite images. First, both sources are classified individually in five classes, using state-of-the-art supervised classification approaches and Convolutional Neural Networks. Obtained results are merged in order to extract buildings as accurately as possible. Then, detected buildings are merged again with the S2 classification to extract urban area; a prior to be in an urban area is derived from these building objects and merged with a binary classification derived from the original S2 classification. Both fusions involve a per pixel decision level fusion followed by a contrast sensitive regularization. Numéro de notice : C2018-046 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS.2018.8517476 Date de publication en ligne : 05/11/2018 En ligne : https://doi.org/10.1109/IGARSS.2018.8517476 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91269 Fusion de classifications de données SPOT 6/7 et SENTINEL 2 pour la détection des zones artificialisées / Arnaud Le Bris (2018)
Titre : Fusion de classifications de données SPOT 6/7 et SENTINEL 2 pour la détection des zones artificialisées Type de document : Article/Communication Auteurs : Arnaud Le Bris , Auteur ; Cyril Wendl, Auteur ; Nesrine Chehata , Auteur ; Anne Puissant, Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2018 Conférence : TEMU 2018, l'Atelier Télédétection pour l'Etude des Milieux Urbains 19/03/2018 20/03/2019 Strasbourg France Open Access Proceedings Langues : Français (fre) Numéro de notice : C2018-075 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Nature : Communication nature-HAL : ComSansActesPubliés-Unpublished DOI : sans En ligne : https://seafile.unistra.fr/d/9253f57d93884312bca6/files/?p=%2FS2-02_Presentation [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91471 Fusion tardive d’images SPOT-6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine / Cyril Wendl (2018)
Titre : Fusion tardive d’images SPOT-6/7 et de données multitemporelles Sentinel-2 pour la détection de la tache urbaine Type de document : Article/Communication Auteurs : Cyril Wendl, Auteur ; Arnaud Le Bris , Auteur ; Nesrine Chehata , Auteur ; Anne Puissant, Auteur ; Tristan Postadjian , Auteur Editeur : Saint-Mandé : Institut national de l'information géographique et forestière - IGN (2012-) Année de publication : 2018 Projets : GeoSud / Conférence : CFPT 2018, Conférence Française de Photogrammétrie et de Télédétection 25/06/2018 28/06/2018 Champs-sur-Marne France Open Access Proceedings Importance : 8 p. Note générale : bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bati
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification pixellaire
[Termes IGN] extraction automatique
[Termes IGN] fusion d'images
[Termes IGN] image Sentinel-MSI
[Termes IGN] image SPOT 6
[Termes IGN] image SPOT 7
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal convolutif
[Termes IGN] tachèle
[Termes IGN] zone urbaineRésumé : (auteur) La fusion d’images multispectrales à très haute résolution spatiale (THR) avec des séries temporelles d’images moins résolues spatialement mais comportant plus de bandes spectrales permet d’améliorer la classification de l’occupation du sol. Elle tire en effet le meilleur parti des points forts géométriques et sémantiques de ces deux sources. Ce travail s’intéresse à un processus d’extraction automatique de la tache urbaine fondé sur la fusion tardive de classifications calculées respectivement à partir d’images satellitaires Sentinel-2 et SPOT-6/7. Ces deux sources sont d’abord classées indépendamment selon 5 classes, respectivement par forêts aléatoires et réseaux de neurones convolutifs. Les résultats sont alors fusionnés afin d’extraire les bâtiments le plus finement possible. Cette étape de fusion inclut une fusion au niveau pixellaire suivie d’une étape de régularisation spatiale intégrant un terme lié au contraste de l’image. Le résultat obtenu connaît ensuite une seconde fusion afin d’en déduire la tache urbaine : une mesure a priori de se trouver en zone urbaine est calculée à partir des objets bâtiments détectés précédemment et fusionnée avec une classification binaire dérivée de la classification originale des données Sentinel-2. Numéro de notice : C2018-010 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésNat DOI : sans Date de publication en ligne : 25/06/2018 En ligne : https://rfiap2018.ign.fr/sites/default/files/ARTICLES/CFPT2018/Oraux/CFPT2018_pa [...] Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90381 Documents numériques
en open access
Fusion tardive d’images SPOT-6/7 - pdf éditeurAdobe Acrobat PDF Fusion of multi-temporal Sentinel-2 image series and very-high spatial resolution images for detection of urban areas / Cyril Wendl (2017)Permalink