Détail de l'auteur
Auteur Frank Liebisch |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extracting leaf area index using viewing geometry effects : A new perspective on high-resolution unmanned aerial system photography / Lukas Roth in ISPRS Journal of photogrammetry and remote sensing, vol 141 (July 2018)
[article]
Titre : Extracting leaf area index using viewing geometry effects : A new perspective on high-resolution unmanned aerial system photography Type de document : Article/Communication Auteurs : Lukas Roth, Auteur ; Helge Aasen, Auteur ; Achim Walter, Auteur ; Frank Liebisch, Auteur Année de publication : 2018 Article en page(s) : pp 161 - 175 Note générale : Bibliography Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] cultures
[Termes IGN] drone
[Termes IGN] Glycine max
[Termes IGN] image aérienne
[Termes IGN] image RVB
[Termes IGN] indice foliaire
[Termes IGN] Leaf Area Index
[Termes IGN] modélisation géométrique de prise de vue
[Termes IGN] orthoimage géoréférencée
[Termes IGN] segmentation d'image
[Termes IGN] simulation 3D
[Termes IGN] SuisseRésumé : (Editeur) Extraction of leaf area index (LAI) is an important prerequisite in numerous studies related to plant ecology, physiology and breeding. LAI is indicative for the performance of a plant canopy and of its potential for growth and yield. In this study, a novel method to estimate LAI based on RGB images taken by an unmanned aerial system (UAS) is introduced. Soybean was taken as the model crop of investigation. The method integrates viewing geometry information in an approach related to gap fraction theory. A 3-D simulation of virtual canopies helped developing and verifying the underlying model. In addition, the method includes techniques to extract plot based data from individual oblique images using image projection, as well as image segmentation applying an active learning approach. Data from a soybean field experiment were used to validate the method. The thereby measured LAI prediction accuracy was comparable with the one of a gap fraction-based handheld device ( of , RMSE of m 2m−2) and correlated well with destructive LAI measurements ( of , RMSE of m2 m−2). These results indicate that, if respecting the range (LAI ) the method was tested for, extracting LAI from UAS derived RGB images using viewing geometry information represents a valid alternative to destructive and optical handheld device LAI measurements in soybean. Thereby, we open the door for automated, high-throughput assessment of LAI in plant and crop science. Numéro de notice : A2018-287 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.04.012 Date de publication en ligne : 07/05/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.04.012 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90402
in ISPRS Journal of photogrammetry and remote sensing > vol 141 (July 2018) . - pp 161 - 175[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018073 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018072 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt