Détail de l'autorité
MAESTRIA / Mallet, Clément
Autorités liées :
Nom :
MAESTRIA
titre complet :
Multi-modal Earth Observation Image Analysis - Analysis d’images multi-modales d’observation de la T
URL du projet :
Auteurs :
Mallet, Clément
|
Documents disponibles (9)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Fast estimation for robust supervised classification with mixture models / Erwan Giry Fouquet in Pattern recognition letters, vol 152 (December 2021)
[article]
Titre : Fast estimation for robust supervised classification with mixture models Type de document : Article/Communication Auteurs : Erwan Giry Fouquet, Auteur ; Mathieu Fauvel, Auteur ; Clément Mallet , Auteur ; Clément Mallet , Auteur Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément, ANITI / Mallet, Clément Article en page(s) : pp 320 - 326 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] classification
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] échantillon
[Termes IGN] méthode robuste
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Label noise is known to negatively impact the performance of classification algorithms. In this paper, we develop a model robust to label noise that uses both labelled and unlabelled samples. In particular, we propose a novel algorithm to optimize the model parameters that scales efficiently w.r.t. the number of training samples. Our contribution relies on a consensus formulation of the original objective function that is highly parallelizable. The optimization is performed with the Alternating Direction Method of Multipliers framework. Experimental results on synthetic datasets show an improvement of several orders of magnitude in terms of processing time, with no loss in terms of accuracy. Our method appears also tailored to handle real data with significant label noise. Numéro de notice : A2021-061 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.patrec.2021.10.020 Date de publication en ligne : 26/10/2021 En ligne : https://doi.org/10.1016/j.patrec.2021.10.020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99531
in Pattern recognition letters > vol 152 (December 2021) . - pp 320 - 326[article]Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery / Nicolas David in Remote sensing letters, vol 12 n° 10 (October 2021)
[article]
Titre : Investigating operational country-level crop monitoring with Sentinel~1 and~2 imagery Type de document : Article/Communication Auteurs : Nicolas David , Auteur ; Sébastien Giordano , Auteur ; Clément Mallet , Auteur Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément Article en page(s) : pp 970 - 982 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] chaîne de traitement
[Termes IGN] France (administrative)
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] politique agricole commune
[Termes IGN] surveillance agricoleRésumé : (auteur) In this paper, we propose an operational solution for the yearly classification of crop parcels at national scale (namely France) for Land Parcel Identification System updating, under the Common Agricultural Policy (CAP) umbrella. Our pipeline is based on the ι2 open-source framework and fed with both time series of Sentinel-1 radar and Sentinel-2 optical images, with complementary contributions. Three conceivable scenarios are investigated with two sets of nomenclatures (17 and 43 classes): early, on-line, and late classifications. Experiments performed on 2017 show very satisfactory results (82–97%), locally almost on-par with state-of-the-art deep-based methods. We can conclude our framework offers a strong basis for country-scale operational deployment for 2020+CAP. Numéro de notice : A2021-600 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/2150704X.2021.1950940 En ligne : https://doi.org/10.1080/2150704X.2021.1950940 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98222
in Remote sensing letters > vol 12 n° 10 (October 2021) . - pp 970 - 982[article]Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach / Luc Baudoux in Remote sensing, Vol 13 n° 6 (March 2021)
[article]
Titre : Toward a yearly country-scale CORINE land-cover map without using images: A map translation approach Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Année de publication : 2021 Projets : AI4GEO / Mallet, Clément, MAESTRIA / Mallet, Clément Article en page(s) : n° 1060 - 32 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage dirigé
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] détection de changement
[Termes IGN] image à haute résolution
[Termes IGN] inférence
[Termes IGN] mise à jour automatique
[Termes IGN] mise à jour de base de donnéesRésumé : (Auteur) CORINE Land-Cover (CLC) and its by-products are considered as a reference baseline for land-cover mapping over Europe and subsequent applications. CLC is currently tediously produced each six years from both the visual interpretation and the automatic analysis of a large amount of remote sensing images. Observing that various European countries regularly produce in parallel their own land-cover country-scaled maps with their own specifications, we propose to directly infer CORINE Land-Cover from an existing map, therefore steadily decreasing the updating time-frame. No additional remote sensing image is required. In this paper, we focus more specifically on translating a country-scale remote sensed map, OSO (France), into CORINE Land Cover, in a supervised way. OSO and CLC not only differ in nomenclature but also in spatial resolution. We jointly harmonize both dimensions using a contextual and asymmetrical Convolution Neural Network with positional encoding. We show for various use cases that our method achieves a superior performance than the traditional semantic-based translation approach, achieving an 81% accuracy over all of France, close to the targeted 85% accuracy of CLC. Numéro de notice : A2021-244 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : GEOMATIQUE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13061060 Date de publication en ligne : 11/03/2021 En ligne : https://dx.doi.org/10.3390/rs13061060 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97311
in Remote sensing > Vol 13 n° 6 (March 2021) . - n° 1060 - 32 p.[article]
Titre : Contextual land-cover map translation with semantic segmentation Type de document : Article/Communication Auteurs : Luc Baudoux , Auteur ; Jordi Inglada, Auteur ; Clément Mallet , Auteur Editeur : New York : Institute of Electrical and Electronics Engineers IEEE Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément Conférence : IGARSS 2021, IEEE International Geoscience And Remote Sensing Symposium 11/07/2021 16/07/2021 Bruxelles Belgique Proceedings IEEE Importance : pp 2488 - 2491 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] base de données d'occupation du sol
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] Corine Land Cover
[Termes IGN] France (administrative)
[Termes IGN] segmentation sémantique
[Termes IGN] transformation géométrique
[Termes IGN] translationRésumé : (auteur) This paper presents a framework for translating a land-cover map into another one in a supervised way. This links to numerous applications (updating, completion, etc.). Conversely to existing approaches, we jointly perform spatial and semantic transformation without any prior knowledge. The proposed method assumes that: i) examples of the source and target maps already exist, ii) the spatial resolution of the source map is equal or higher than the target one. The translation is performed using an asymmetric Convolutional Neural Network with positional encoding. Experimental results show the effectiveness of the method in retrieving a yearly version of Corine Land Cover (CLC) at country-scale (France) using an existing high-resolution map and with similar accuracy than existing CLC maps (~80%). Numéro de notice : C2021-049 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Autre URL associée : vers HAL Thématique : IMAGERIE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.1109/IGARSS47720.2021.9553693 Date de publication en ligne : 12/10/2021 En ligne : https://doi.org/10.1109/IGARSS47720.2021.9553693 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99414 Learning to translate land-cover maps: Several multi-dimensional context-wise solutions / Luc Baudoux (2021)
Titre : Learning to translate land-cover maps: Several multi-dimensional context-wise solutions Titre original : Apprendre à traduire des cartes d'occupation des sols : Plusieurs solutions exploitant de multiples formes de contexte Type de document : Thèse/HDR Auteurs : Luc Baudoux , Auteur ; Clément Mallet , Directeur de thèse ; Jordi Inglada, Directeur de thèse Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2021 Projets : MAESTRIA / Mallet, Clément Note générale : bibliographie
École doctorale n° 532, Mathématiques, Science, et Technologie de l’Information et de la Communication (MSTIC) - Spécialité de doctorat : Signal, Image, et AutomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'occupation du sol
[Termes IGN] indicateur de résolution
[Termes IGN] information sémantique
[Termes IGN] nomenclature
[Termes IGN] prise en compte du contexteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) La description de la couverture biophysique des surfaces terrestres, appelée occupation du sol, est d'une importance capitale dans de nombreux domaines, allant de l'urbanisme aux études climatiques en passant par la sécurité alimentaire. Historiquement produites à la main, les cartes d'occupation du sol ont profité de l'essor de l'imagerie satellitaire et des méthodes avancées de vision par ordinateur pour gagner en précision et en fréquence de mise à jour. Elles souffrent toutefois de deux inconvénients limitant leur utilisation. D'une part, la résolution spatiale des cartes produites est fixe. Or une carte d'une résolution de 10 mètres ne conviendra pas à l'analyse de phénomènes à grande échelle, ni à l'étude d'objets de moins de 10 mètres. D'autre part, la nomenclature de la carte est choisie pour répondre à un besoin spécifique qui ne correspond pas nécessairement aux besoins d'un autre utilisateur. Ainsi, une carte peut regrouper sous le terme "bâti" un ensemble d'éléments tels que des "routes" et des "habitations", qui dans d'autres nomenclatures seront classés séparément. Les approches actuelles de traduction de nomenclatures sont principalement fondées sur des méthodes de traduction sémantique (LCCS...) appliquées au niveau de la nomenclature en comparant les définitions de classes (la classe "blé" sera traduite en "herbacée"). Ce faisant, elles négligent le fait que deux objets de la même classe peuvent être traduits différemment en fonction, par exemple, de leur contexte spatial ou de leur évolution temporelle. En outre, la traduction de la résolution spatiale est généralement traitée distinctement de la traduction de nomenclature alors que ces deux notions sont intimement liées (un arbre seul ne peut pas être traduit en "forêt"). Cette thèse aborde ce problème en proposant des méthodes de traduction contextuelle augmentant les possibilités de réutilisation et de génération de nouvelles occupations des sols. Dans un premier temps, nous proposons différentes stratégies, principalement fondées sur des réseaux de neurones à convolution apprenant à traduire une carte source en une carte cible en fonction du contexte. Nous montrons l'importance cruciale du contexte spatial et géographique (une forêt en montagne est probablement constituée de conifères) sur de multiples exemples de traductions. Dans un deuxième temps, partant du constat que les modèles de traduction multi-langues donnent de meilleurs résultats que ceux entraînés à traduire d'une seule langue source vers une seule langue cible, nous proposons un modèle de traduction multi-cartes permettant d'obtenir plusieurs nomenclatures cibles à partir d'une carte source. Nous montrons que ce modèle permet d'obtenir des résultats plus robustes que les modèles entraînés sur une seule traduction, en particulier sur des cartes avec peu d'échantillons d'entraînement. Troisièmement, nous expérimentons différentes configurations de fusion multimodale fusionnant des images satellites (optiques et radar) et des données d'élévation du terrain avec des cartes d'occupation du sol. Enfin, nous définissons la notion et proposons une méthode pour construire un espace de représentation sémantique commun à toutes les occupations du sol. Nous ne représentons alors plus la traduction comme le passage d'un espace de représentation discret à n classes (une nomenclature) vers un autre espace, mais comme un simple changement d'interprétation d'un espace de représentation sémantique continu commun à toutes les nomenclatures. Nous proposons une première application de la notion d'espace de représentation sémantique à la traduction, en nous concentrant sur la traduction de cartes sources non vues pendant l’entraînement du modèle de traduction. Les codes et jeux de données (France entière, six cartes d'occupation du sol, images satellite, vérité terrain) produits au cours de cette thèse sont rendus accessibles pour la reproductibilité et des comparaisons futures. Numéro de notice : 17766 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : GEOMATIQUE/IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse : Signal, Image, et Automatique : Gustave Eiffel : 2021 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans Date de publication en ligne : 07/02/2023 En ligne : https://hal.science/tel-03977658 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103209 Can SPOT-6/7 CNN semantic segmentation improve Sentinel-2 based land cover products? sensor assessment and fusion / Olivier Stocker in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol V-2-2020 (August 2020)PermalinkImproved crop classification with rotation knowledge using Sentinel-1 and -2 time series / Sébastien Giordano in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 7 (July 2020)PermalinkPermalinkInternational workshop on large scale land cover mapping from remote sensing, 3 décembre 2019 / Mathieu Fauvel (2019)Permalink