Détail de l'auteur
Auteur Guomo Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Remote estimation of canopy leaf area index and chlorophyll content in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forest using MODIS reflectance data / Xiaojun Xu in Annals of Forest Science, vol 75 n° 1 (March 2018)
[article]
Titre : Remote estimation of canopy leaf area index and chlorophyll content in Moso bamboo (Phyllostachys edulis (Carrière) J. Houz.) forest using MODIS reflectance data Type de document : Article/Communication Auteurs : Xiaojun Xu, Auteur ; Huanqiang Du, Auteur ; Guomo Zhou, Auteur ; Fangjie Mao, Auteur ; Xuejian Li, Auteur ; Dien Zhu, Auteur ; Yanggguang Li, Auteur ; Lu Cui, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Chine
[Termes IGN] données de terrain
[Termes IGN] image Terra-MODIS
[Termes IGN] Leaf Area Index
[Termes IGN] Phyllostachys edulis
[Termes IGN] réflectance végétale
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (Auteur) We estimated the leaf area index (LAI) and canopy chlorophyll content (CC) of Moso bamboo forest by using statistical models based on MODIS data and field measurements. Results showed that the statistical model driven by MODIS data has the potential to accurately estimate LAI and CC, while the structure of the calibration models varied between on- and off-years because of the different leaf change and bamboo shoot production characteristics between these types of years. LAI and CC (gram per square meter of ground area) are important parameters for determining carbon exchange between Moso bamboo forest (Phyllostachys edulis (Carrière) J. Houz.) and the atmosphere. This study evaluated the ability of a statistical model driven by MODIS data to accurately estimate the LAI and CC in Moso bamboo forest, and differences in the LAI and CC between on-years (years with great shoot production) and off-years (years with less shoot production) were analyzed. The LAI and CC measurements were collected in Anji County, Zhejiang Province, China. Indicators of LAI and CC were calculated from MODIS data. Then, a regression analysis was used to build relationships between the LAI and CC and various indicators on the basis of leaf change and bamboo shoot production characteristics of Moso bamboo forest. LAI and CC were accurately estimated by using the regression analysis driven by MODIS-derived indicators with a relative root mean squared error (RMSEr) of 9.04 and 13.1%, respectively. The structure of the calibration models varied between on- and off-years. Long-term time series analysis from 2000 to 2015 showed that LAI and CC differed largely between on- and off-years. This study demonstrates that LAI and CC of Moso bamboo forest can be estimated accurately by using a statistical model driven by MODIS-derived indicators, but attention should be paid to differences in the calibration models between on-and off-years. Numéro de notice : A2018-311 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-018-0721-y Date de publication en ligne : 13/03/2018 En ligne : https://doi.org/10.1007/s13595-018-0721-y Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90431
in Annals of Forest Science > vol 75 n° 1 (March 2018)[article]