Détail de l'auteur
Auteur Feng Lu |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A lightweight ensemble spatiotemporal interpolation model for geospatial data / Shifen Cheng in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : A lightweight ensemble spatiotemporal interpolation model for geospatial data Type de document : Article/Communication Auteurs : Shifen Cheng, Auteur ; Peng Peng, Auteur ; Feng Lu, Auteur Année de publication : 2020 Article en page(s) : pp 1849 - 1872 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] coefficient de corrélation
[Termes IGN] distance pondérée
[Termes IGN] données localisées
[Termes IGN] erreur absolue
[Termes IGN] interpolation spatiale
[Termes IGN] lissage de données
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] requête spatiotemporelleRésumé : (auteur) Missing data is a common problem in the analysis of geospatial information. Existing methods introduce spatiotemporal dependencies to reduce imputing errors yet ignore ease of use in practice. Classical interpolation models are easy to build and apply; however, their imputation accuracy is limited due to their inability to capture spatiotemporal characteristics of geospatial data. Consequently, a lightweight ensemble model was constructed by modelling the spatiotemporal dependencies in a classical interpolation model. Temporally, the average correlation coefficients were introduced into a simple exponential smoothing model to automatically select the time window which ensured that the sample data had the strongest correlation to missing data. Spatially, the Gaussian equivalent and correlation distances were introduced in an inverse distance-weighting model, to assign weights to each spatial neighbor and sufficiently reflect changes in the spatiotemporal pattern. Finally, estimations of the missing values from temporal and spatial were aggregated into the final results with an extreme learning machine. Compared to existing models, the proposed model achieves higher imputation accuracy by lowering the mean absolute error by 10.93 to 52.48% in the road network dataset and by 23.35 to 72.18% in the air quality station dataset and exhibits robust performance in spatiotemporal mutations. Numéro de notice : A2020-484 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1725016 Date de publication en ligne : 12/02/2020 En ligne : https://doi.org/10.1080/13658816.2020.1725016 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95651
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1849 - 1872[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible Fine-grained prediction of urban population using mobile phone location data / Jie Chen in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)
[article]
Titre : Fine-grained prediction of urban population using mobile phone location data Type de document : Article/Communication Auteurs : Jie Chen, Auteur ; Shih-Lung Shaw, Auteur ; Feng Lu, Auteur ; Mingxiao Li, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 1770 - 1786 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] classification par réseau neuronal
[Termes IGN] données spatiotemporelles
[Termes IGN] modèle de simulation
[Termes IGN] population urbaine
[Termes IGN] Shanghai (Chine)
[Termes IGN] trace numériqueRésumé : (Auteur) Fine-grained prediction of urban population is of great practical significance in many domains that require temporally and spatially detailed population information. However, fine-grained population modeling has been challenging because the urban population is highly dynamic and its mobility pattern is complex in space and time. In this study, we propose a method to predict the population at a large spatiotemporal scale in a city. This method models the temporal dependency of population by estimating the future inflow population with the current inflow pattern and models the spatial correlation of population using an artificial neural network. With a large dataset of mobile phone locations, the model’s prediction error is low and only increases gradually as the temporal prediction granularity increases, and this model is adaptive to sudden changes in population caused by special events. Numéro de notice : A2018-304 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1460753 Date de publication en ligne : 26/04/2018 En ligne : https://doi.org/10.1080/13658816.2018.1460753 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90445
in International journal of geographical information science IJGIS > vol 32 n° 9-10 (September - October 2018) . - pp 1770 - 1786[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2018051 RAB Revue Centre de documentation En réserve L003 Disponible