Détail de l'auteur
Auteur Jia Yu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Study on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm / Fengfan Wang in Computers & geosciences, vol 149 (April 2021)
[article]
Titre : Study on offshore seabed sediment classification based on particle size parameters using XGBoost algorithm Type de document : Article/Communication Auteurs : Fengfan Wang, Auteur ; Jia Yu, Auteur ; Zhijie Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 104713 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatiale
[Termes IGN] calcul matriciel
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] diagramme
[Termes IGN] échantillon
[Termes IGN] Extreme Gradient Machine
[Termes IGN] fond marin
[Termes IGN] gravier
[Termes IGN] image à haute résolution
[Termes IGN] sédimentRésumé : (auteur) Folk's textual classification scheme which is widely used for sediment study operates with the proportions of gravel, sand, silt and clay fractions conventionally. However, dealing with data from different sources usually needs to face missing values that may make the classification difficult. To solve this problem and discover other methods of analyzing the scheme, with samples of offshore seabed sediment, a two-stage model was established to predict a sample's class using the XGBoost algorithm as well as the grain size parameters as input features. The final model was evaluated with quantitative performance measures of recall, precision and F1 score, and by comparing sediment texture maps using the predicted and the actual data. The results show that the model performs well on extraction of sediment samples without gravel fraction, and prediction of classes that have independent characteristics of grain size parameters or samples not near the boundaries of classes in the ternary diagram. The predicted sediment texture is close to the actual and could be reliable due to errors with little impact on further applications. It is demonstrated that the model could be an auxiliary or alternative approach to offshore sediment texture mapping, as well as supplementary to the analysis of sedimentary environment. Numéro de notice : A2021-289 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104713 Date de publication en ligne : 12/02/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104713 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97400
in Computers & geosciences > vol 149 (April 2021) . - n° 104713[article]Spatial data management in apache spark: the GeoSpark perspective and beyond / Jia Yu in Geoinformatica, vol 23 n° 1 (January 2019)
[article]
Titre : Spatial data management in apache spark: the GeoSpark perspective and beyond Type de document : Article/Communication Auteurs : Jia Yu, Auteur ; Zongsi Zhang, Auteur ; Mohamed Sarwat, Auteur Année de publication : 2019 Article en page(s) : pp 37 - 78 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] analyse comparative
[Termes IGN] Apache (serveur)
[Termes IGN] arbre k-d
[Termes IGN] arbre quadratique
[Termes IGN] arbre-R
[Termes IGN] données massives
[Termes IGN] Hadoop
[Termes IGN] index spatial
[Termes IGN] performance
[Termes IGN] Spark
[Termes IGN] traitement répartiRésumé : (auteur) The paper presents the details of designing and developing GeoSpark, which extends the core engine of Apache Spark and SparkSQL to support spatial data types, indexes, and geometrical operations at scale. The paper also gives a detailed analysis of the technical challenges and opportunities of extending Apache Spark to support state-of-the-art spatial data partitioning techniques: uniform grid, R-tree, Quad-Tree, and KDB-Tree. The paper also shows how building local spatial indexes, e.g., R-Tree or Quad-Tree, on each Spark data partition can speed up the local computation and hence decrease the overall runtime of the spatial analytics program. Furthermore, the paper introduces a comprehensive experiment analysis that surveys and experimentally evaluates the performance of running de-facto spatial operations like spatial range, spatial K-Nearest Neighbors (KNN), and spatial join queries in the Apache Spark ecosystem. Extensive experiments on real spatial datasets show that GeoSpark achieves up to two orders of magnitude faster run time performance than existing Hadoop-based systems and up to an order of magnitude faster performance than Spark-based systems. Numéro de notice : A2019-225 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-018-0330-9 Date de publication en ligne : 22/10/2018 En ligne : http://dx.doi.org/10.1007/s10707-018-0330-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92621
in Geoinformatica > vol 23 n° 1 (January 2019) . - pp 37 - 78[article]Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters / Jia Yu in International journal of geographical information science IJGIS, vol 32 n° 9-10 (September - October 2018)
[article]
Titre : Integrating multi-agent evacuation simulation and multi-criteria evaluation for spatial allocation of urban emergency shelters Type de document : Article/Communication Auteurs : Jia Yu, Auteur ; Chuanrong Zhang, Auteur ; Jiahong Wen, Auteur ; Weidong Li, Auteur ; Rui Liu, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 1884 - 1910 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] analyse multicritère
[Termes IGN] gestion de crise
[Termes IGN] Shanghai (Chine)
[Termes IGN] simulation
[Termes IGN] système multi-agents
[Termes IGN] villeRésumé : (Auteur) The timely and secure evacuation of residents to nearby urban emergency shelters is of great importance during unexpected disaster events. However, evacuation and allocation of shelters are seldom examined as a whole, even though they are usually closely related tasks in disaster management. To conduct better spatial allocation of emergency shelters in cities, this study proposes a new method which integrates techniques of multi-agent system and multi-criteria evaluation for spatial allocation of urban emergency shelters. Compared with the traditional emergency shelter allocation methods, the proposed method highlights the importance of dynamic emergency evacuation simulations for spatial allocation suitability analysis. Three kinds of agents involved in evacuation and sheltering procedures are designed: government agents, shelter agents, and resident agents. Emergency evacuations are simulated based on the interactions of these agents to find potential problems, for example, time-consuming evacuation processes and road congestion. A case study in Jing’an District, Shanghai, China was conducted to demonstrate the feasibility of the proposed method. After three rounds of simulation and optimization, new shelters were spatially allocated and a detailed recommended plan of shelters and related facilities was generated. The optimized spatial allocation of shelters may help local residents to be evacuated more quickly and securely. Numéro de notice : A2018-307 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1463442 Date de publication en ligne : 25/04/2018 En ligne : https://doi.org/10.1080/13658816.2018.1463442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90451
in International journal of geographical information science IJGIS > vol 32 n° 9-10 (September - October 2018) . - pp 1884 - 1910[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2018051 RAB Revue Centre de documentation En réserve L003 Disponible