Détail de l'auteur
Auteur V. N. Mishra |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data / P. Kumar in Geocarto international, vol 33 n° 9 (September 2018)
[article]
Titre : Estimation of winter wheat crop growth parameters using time series Sentinel-1A SAR data Type de document : Article/Communication Auteurs : P. Kumar, Auteur ; R. Prasad, Auteur ; D. K. Gupta, Auteur ; V. N. Mishra, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 942 - 956 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bande C
[Termes IGN] blé (céréale)
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] croissance végétale
[Termes IGN] cultures
[Termes IGN] données polarimétriques
[Termes IGN] estimation statistique
[Termes IGN] hiver
[Termes IGN] image Sentinel-SAR
[Termes IGN] Leaf Area Index
[Termes IGN] régression
[Termes IGN] régression linéaire
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste marge
[Termes IGN] teneur en eau de la végétationRésumé : (Auteur) In the present study, Sentinel-1A Synthetic Aperture Radar analysis of time series data at C-band was carried out to estimate the winter wheat crop growth parameters. Five different date images were acquired during January 2015–April 2015 at different growth stages from tillering to ripening in Varanasi district, India. The winter wheat crop parameters, i.e. leaf area index, vegetation water content (VWC), fresh biomass (FB), dry biomass (DB) and plant height (PH) were estimated using random forest regression (RFR), support vector regression (SVR), artificial neural network regression (ANNR) and linear regression (LR) algorithms. The Ground Range Detected products of Interferometric Wide (IW) Swath were used at VV polarization. The three different subplots of 1 m2 area were taken for the measurement of crop parameters at every growth stage. In total, 73 samples were taken as the training data-sets and 39 samples were taken as testing data-sets. The highest sensitivity (adj. R2 = 0.95579) of backscattering with VWC was found using RFR algorithm, whereas the lowest sensitivity (adj. R2 = 0.66201) was found for the PH using LR algorithm. Overall results indicate more accurate estimation of winter wheat parameters by the RFR algorithm followed by SVR, ANNR and LR algorithms. Numéro de notice : A2018-337 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2017.1316781 Date de publication en ligne : 18/04/2017 En ligne : https://doi.org/10.1080/10106049.2017.1316781 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90551
in Geocarto international > vol 33 n° 9 (September 2018) . - pp 942 - 956[article]