Détail de l'auteur
Auteur Zhang Yan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Foreground-aware refinement network for building extraction from remote sensing images / Zhang Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 11 (November 2022)
[article]
Titre : Foreground-aware refinement network for building extraction from remote sensing images Type de document : Article/Communication Auteurs : Zhang Yan, Auteur ; Wang Xiangyu, Auteur ; Zhang Zhongwei, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 731 - 738 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse visuelle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de régions
[Termes IGN] détection du bâti
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] jeu de donnéesRésumé : (auteur) To extract buildings accurately, we propose a foreground-aware refinement network for building extraction. In particular, in order to reduce the false positive of buildings, we design the foreground-aware module using the attention gate block, which effectively suppresses the features of nonbuilding and enhances the sensitivity of the model to buildings. In addition, we introduce the reverse attention mechanism in the detail refinement module. Specifically, this module guides the network to learn to supplement the missing details of the buildings by erasing the currently predicted regions of buildings and achieves more accurate and complete building extraction. To further optimize the network, we design hybrid loss, which combines BCE loss and SSIM loss, to supervise network learning from both pixel and structure layers. Experimental results demonstrate the superiority of our network over state-of-the-art methods in terms of both quantitative metrics and visual quality. Numéro de notice : A2022-842 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00081R2 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.14358/PERS.21-00081R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102055
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 11 (November 2022) . - pp 731 - 738[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022111 SL Revue Centre de documentation Revues en salle Disponible A simple line clustering method for spatial analysis with origin-destination data and its application to bike-sharing movement data / Biao He in ISPRS International journal of geo-information, vol 7 n° 6 (June 2018)
[article]
Titre : A simple line clustering method for spatial analysis with origin-destination data and its application to bike-sharing movement data Type de document : Article/Communication Auteurs : Biao He, Auteur ; Zhang Yan, Auteur ; Yu Chen, Auteur ; Zhihui Gu, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse spatio-temporelle
[Termes IGN] bicyclette
[Termes IGN] entropie
[Termes IGN] extraction de modèle
[Termes IGN] origine - destination
[Termes IGN] raisonnement spatial
[Termes IGN] voisinage (relation topologique)Résumé : (Auteur) Clustering methods are popular tools for pattern recognition in spatial databases. Existing clustering methods have mainly focused on the matching and clustering of complex trajectories. Few studies have paid attention to clustering origin-destination (OD) trips and discovering strong spatial linkages via OD lines, which is useful in many areas such as transportation, urban planning, and migration studies. In this paper, we present a new Simple Line Clustering Method (SLCM) that was designed to discover the strongest spatial linkage by searching for neighboring lines for every OD trip within a certain radius. This method adopts entropy theory and the probability distribution function for parameter selection to ensure significant clustering results. We demonstrate this method using bike-sharing location data in a metropolitan city. Results show that (1) the SLCM was significantly effective in discovering clusters at different scales, (2) results with the SLCM analysis confirmed known structures and discovered unknown structures, and (3) this approach can also be applied to other OD data to facilitate pattern extraction and structure understanding. Numéro de notice : A2018-345 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi7060203 Date de publication en ligne : 29/05/2018 En ligne : https://doi.org/10.10.3390/ijgi7060203 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90568
in ISPRS International journal of geo-information > vol 7 n° 6 (June 2018)[article]