Détail de l'auteur
Auteur Oscar S. Siordia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evolutionary approach for detection of buried remains using hyperspectral images / Leon Dozal in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 7 (juillet 2018)
[article]
Titre : Evolutionary approach for detection of buried remains using hyperspectral images Type de document : Article/Communication Auteurs : Leon Dozal, Auteur ; José L. Silvan-Cardenas, Auteur ; Daniela Moctezuma, Auteur ; Oscar S. Siordia, Auteur ; Enrique Naredo, Auteur Année de publication : 2018 Article en page(s) : pp 435 - 450 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] algorithme génétique
[Termes IGN] image hyperspectrale
[Termes IGN] Mexique
[Termes IGN] précision de la classification
[Termes IGN] teneur en eau de la végétation
[Termes IGN] tombeRésumé : (Auteur) Hyperspectral imaging has been successfully utilized to locate clandestine graves. This study applied a Genetic Programming technique called Brain Programming (BP) for automating the design of Hyperspectral Visual Attention Models (H-VAM.), which is proposed as a new method for the detection of buried remains. Four graves were simulated and monitored during six months by taking in situ spectral measurements of the ground. Two experiments were implemented using Kappa and weighted Kappa coefficients as classification accuracy measures for guiding the BP search of the best H-VAM. Experimental results demonstrate that the proposed BP method improves classification accuracy compared to a previous approach. A better detection performance was observed for the image acquired after three months from burial. Moreover, results suggest that the use of spectral bands that respond to vegetation and water content of the plants and provide evidence that the number of buried bodies plays a crucial role on a successful detection. Numéro de notice : A2018-359 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.84.7.435 Date de publication en ligne : 01/07/2018 En ligne : https://doi.org/10.14358/PERS.84.7.435 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90599
in Photogrammetric Engineering & Remote Sensing, PERS > vol 84 n° 7 (juillet 2018) . - pp 435 - 450[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2018071 RAB Revue Centre de documentation En réserve L003 Disponible