Détail de l'auteur
Auteur Ran Tao |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Graph-based block-level urban change detection using Sentinel-2 time series / Nan Wang in Remote sensing of environment, vol 274 (June 2022)
[article]
Titre : Graph-based block-level urban change detection using Sentinel-2 time series Type de document : Article/Communication Auteurs : Nan Wang, Auteur ; Wei Li, Auteur ; Ran Tao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 112993 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse multivariée
[Termes IGN] bâtiment
[Termes IGN] Chine
[Termes IGN] détection de changement
[Termes IGN] espace vert
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] graphe
[Termes IGN] image Sentinel-MSI
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] segmentation d'image
[Termes IGN] série temporelle
[Termes IGN] zone urbaineRésumé : (auteur) Remote sensing technology has been frequently used to obtain information on changes in urban land cover because of its vast spatial coverage and timeliness of observation. Block-level change detection with high temporal resolution image data provides fine detail of urban changes, is suitable for urban management, and has gradually received widespread attention. High-dimensional features are required to express the heterogeneous structure of the blocks. High-dimensional high-frequency time series, namely, multivariate time series, are formed by arranging high-dimensional features chronologically. Classic change detection methods treat multivariate time series as univariate time series one by one. Few studies have analyzed the change in a multivariate time series by considering all variables as an entirety. Therefore, a graph-based segmentation for multivariate time series algorithm (MTS-GS) is proposed in this paper. Specifically, 1) we construct a similarity matrix to explore the changing patterns of multivariate time series for seasonal change, trend change, abrupt change, and noise disturbance; 2) a multivariate time series graph is defined based on the changing patterns; and 3) the corresponding graph segmentation algorithm is proposed in the paper to detect the abrupt and trend changes under noise and seasonal disturbances. Sentinel-2 images of the rapidly developing third-tier city of Luoyang, Henan province, China, are adopted to validate the algorithm. The F1-score in the spatial domain is 84.1%; the producer's and the user's accuracy in the temporal dimension are 81.8% and 80.1%, respectively. Seven change types are defined and extracted, showing the development pattern and the efficiency of land use in the city. Furthermore, the proposed MTS-GS can be used for pixel-level change detection and performs well under various time intervals and cloud covers. Numéro de notice : A2022-399 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.112993 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1016/j.rse.2022.112993 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100699
in Remote sensing of environment > vol 274 (June 2022) . - n° 112993[article]Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series / Gang Chen in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
[article]
Titre : Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series Type de document : Article/Communication Auteurs : Gang Chen, Auteur ; Jean-Claude Thill, Auteur ; Sutee Anantsuksomsri, Auteur ; Nij Tontisirin, Auteur ; Ran Tao, Auteur Année de publication : 2018 Article en page(s) : pp 94 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse d'image orientée objet
[Termes IGN] Birmanie
[Termes IGN] Chine
[Termes IGN] croissance des arbres
[Termes IGN] dendrochronologie
[Termes IGN] Hevea brasiliensis
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Laos
[Termes IGN] modèle de croissance végétale
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] plantation forestière
[Termes IGN] série temporelleRésumé : (Auteur) Rubber (Hevea brasiliensis) plantations are a rapidly increasing source of land cover change in mainland Southeast Asia. Stand age of rubber plantations obtained at fine scales provides essential baseline data, informing the pace of industrial and smallholder agricultural activities in response to the changing global rubber markets, and local political and socioeconomic dynamics. In this study, we developed an integrated pixel- and object-based tree growth model using Landsat annual time series to estimate the age of rubber plantations in a 21,115 km2 tri-border region along the junction of China, Myanmar and Laos. We produced a rubber stand age map at 30 m resolution, with an accuracy of 87.00% for identifying rubber plantations and an average error of 1.53 years in age estimation. The integration of pixel- and object-based image analysis showed superior performance in building NDVI yearly time series that reduced spectral noises from background soil and vegetation in open-canopy, young rubber stands. The model parameters remained relatively stable during model sensitivity analysis, resulting in accurate age estimation robust to outliers. Compared to the typically weak statistical relationship between single-date spectral signatures and rubber tree age, Landsat image time series analysis coupled with tree growth modeling presents a viable alternative for fine-scale age estimation of rubber plantations. Numéro de notice : A2018-399 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.07.003 Date de publication en ligne : 13/08/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.07.003 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90828
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 94 - 104[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018103 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt