Détail de l'auteur
Auteur Rishu Saxena |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Towards a polyalgorithm for land use change detection / Rishu Saxena in ISPRS Journal of photogrammetry and remote sensing, vol 144 (October 2018)
[article]
Titre : Towards a polyalgorithm for land use change detection Type de document : Article/Communication Auteurs : Rishu Saxena, Auteur ; Layne T. Watson, Auteur ; Randolph H. Wynne, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 217 - 234 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse comparative
[Termes IGN] changement d'occupation du sol
[Termes IGN] détection de changement
[Termes IGN] série temporelleMots-clés libres : EWMACD Exponentially weighted moving average change detection LandTrendR Résumé : (Auteur) One way of analyzing satellite images for land use and land cover change (LULCC) is time series analysis (TSA). Most of the many TSA based LULCC algorithms proposed in the remote sensing community perform well on datasets for which they were designed, but their performance on randomly chosen datasets from across the globe has not been studied. A polyalgorithm combines several basic algorithms, each meant to solve the same problem, producing a strategy that unites the strengths and circumvents the weaknesses of constituent algorithms. The foundation of the proposed TSA based ‘polyalgorithm’ for LULCC is three algorithms (BFAST, EWMACD, and LandTrendR), precisely described mathematically, and chosen to be fundamentally distinct from each other in design and in the phenomena they capture. Analysis of results representing success, failure, and parameter sensitivity for each algorithm is presented. For a given pixel, Hausdorff distance is used to compare the distance between the change times (breakpoints) obtained from two different algorithms. Timesync validation data, a dataset that is based on human interpretation of Landsat time series in concert with historical aerial photography, is used for validation. The polyalgorithm yields more accurate results than EWMACD and LandTrendR alone, but counterintuitively not better than BFAST alone. This nascent work will be directly useful in land use and land cover change studies, of interest to terrestrial science research, especially regarding anthropogenic impacts on the environment. Numéro de notice : A2018-401 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2018.07.002 Date de publication en ligne : 27/07/2018 En ligne : https://doi.org/10.1016/j.isprsjprs.2018.07.002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=90832
in ISPRS Journal of photogrammetry and remote sensing > vol 144 (October 2018) . - pp 217 - 234[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2018101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2018103 DEP-EXM Revue LASTIG Dépôt en unité Exclu du prêt 081-2018102 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt